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A Dynamic Analysis of the Distribution of Commodity Futures and Spot Prices 

 

1. Introduction 

There has been much interest in studying the dynamics of markets and their 

implications for evolving price volatility (Working, 1949; Telsa, 1958; Routledge, 2002; 

Garcia and Leuthold, 2004; Chavas et al., 2014). The development of futures market has 

focused attention on the joint determination of futures and spot prices in commodity markets. 

This paper presents a refined analysis of the dynamic evolution of the distribution of 

commodity futures and spot prices. Many intriguing questions arise. What are the shapes of 

the marginal distributions for futures and spot prices? How do they evolve over time? Do they 

exhibit strong contemporaneous codependence? How do they relate to each other in the short, 

intermediate and long run? Do these relationships vary with market conditions? Are dynamic 

adjustments stable? Do the futures price and the spot price converge under different market 

conditions? While many of these questions are not new (e.g., Garbade and Silber, 1983; Fama 

and French, 1987; Wang and Ke, 2005; Garcia et al., 2014)1, our paper proposes a refined 

approach that provides new and useful insights into the dynamics of the distribution of futures 

price and spot price.  

Our paper proposes a two-step approach to model the evolving distribution of 

commodity prices, with an application to the US soybean futures and spot markets. In a first 

step, we specify and estimate a quantile vector autoregression (QVAR) model that provides a 

flexible representation of the marginal distributions of futures price and spot price and their 
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temporal evolution. In a second step, we estimate a copula that links the marginal distributions 

with the joint distribution. Putting these two steps together, our QVAR-Copula approach 

provides all the information needed to evaluate the dynamics of prices. This includes useful 

implication on a series of issues: dynamic stability, response to shocks, cointegration and 

convergence properties.  

Recent literature has witnessed expanding applications of quantile regression in a 

range of issues including modeling distributions (Koenker, 2005; Lee et al., 2011; Ramsey, 

2020; Chavas, 2020; Huang et al., 2020). Compared with traditional mean regressions, 

quantile regression estimates the whole price distribution, thus going beyond the simple 

estimation of central tendency or spreads (e.g., mean or variance) and offering a flexible tool 

to assess price volatility and its determinants. Applied to dynamic systems, Koenker and Xiao 

(2006) proposed the quantile autoregression (QAR) model as a flexible representation of an 

evolving distribution. In this paper, we expand on the simple QAR model in three ways: 1/ 

we apply it in a multivariate context to capture dynamic cross price effects using a QVAR 

model; 2/ we allow for nonlinear dynamics; and 3/ building on the QVAR estimation of 

marginal distributions, we use a copula to explore linkages between marginal and joint 

distributions.2  

Our QVAR-Copula approach generates a refined and flexible representation of the 

dynamics of the futures and spot price distributions. It is less restrictive than standard time 

series models (e.g., conventional Vector Autoregression (VAR) models or Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) models; see Hamilton (1994) or 
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Enders (2010)) in the sense that our approach allows for arbitrary shapes of distribution 

functions and arbitrary evolution of any moments (including not only mean and variance, but 

also skewness and kurtosis). Indeed, neither the QVAR nor the copula imposes a priori 

restriction on the shape of marginal and joint distributions. All those arguments unveil the 

advantages and contributions of our QVAR-Copula approach in modeling commodity price 

distributions. 

The usefulness of our approach is illustrated in an application to the US soybean 

market. Based on weekly price data over the period of 1980-2019, our QVAR-Copula 

approach uncovers several new and interesting results about the price dynamics in the soybean 

market. First, our analysis evaluates dynamic stability. We find that the futures market 

contributes to improving stability under nearby contract maturity. We also uncover evidence 

of local dynamic instability in the upper tail of the price distributions (importantly, this finding 

could not be obtained from traditional VAR or GARCH models). Second, we investigate the 

nature of cointegration reflecting the long-term relationship between futures price and spot 

price. Our analysis shows the existence of nonlinear cointegration and documents how the 

long-term relationship varies with market conditions. Third, we report quantile-specific 

impulse response functions showing the important role of the futures market in soybean price 

discovery. Finally, we evaluate the basis and its dynamic properties. In a way consistent with 

previous research (e.g., Hoffamn and Aulerich, 2013; Garcia et al., 2014), we find evidence 

of non-convergence of the futures and spot price and discuss its implications.  

The rest of the paper is organized as follows. Section 2 provides a conceptual analysis 
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of the determination of commodity prices in futures and spot markets. Section 3 presents the 

QVAR-Copula econometric model, and Section 4 describes the data. Applied to the US 

soybean market, Section 5 reports the econometric estimates of marginal and joint 

distributions. Economic implications are further discussed in Section 6. Section 7 concludes.   

2. Conceptual Approach 

Consider a commodity priced in two markets: a futures market and a spot market. At 

time 𝑡, denote the futures price for a futures contract with delivery at time (𝑡 + 𝑚) by 𝑝𝑓𝑚𝑡 

and the spot price by 𝑝𝑠𝑡. Let 𝐾 be the set of agents participating in these two markets. At 

time 𝑡, the 𝑘-th market participant trades the quantity 𝑄𝑓𝑘𝑚𝑡 on the futures market and the 

quantity 𝑄𝑠𝑘𝑡 on the spot market, 𝑘 ∈ 𝐾. We let (𝑄𝑓𝑘𝑚𝑡 , 𝑄𝑠𝑘𝑡, ) be net quantities defined 

to be positive for quantity supplied and negative for quantity demanded. In this context, 

market equilibrium conditions at time 𝑡 are given by ∑ 𝑄𝑓𝑘𝑚𝑡𝑘∈𝐾 = 0 and ∑ 𝑄𝑠𝑘𝑡𝑘∈𝐾 = 0.  

Letting 𝒑𝑡 = (𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡) . Consider the case where the 𝑘 -th agent chooses 

(𝑄𝑓𝑘𝑚𝑡 , 𝑄𝑠𝑘𝑡) using the following decision rules:  𝑄𝑓𝑘𝑚𝑡 = 𝑄𝑓𝑘  (𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) 

and 𝑄𝑠𝑘𝑡 = 𝑄𝑠𝑘(𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡), 𝑘 ∈ 𝐾, where 𝑛 is the number of lags reflecting 

dynamic adjustments, 𝒙𝑡 is a vector of factors affecting the behavior of market participants3 

and 𝒆𝑡  is a vector of random variables representing uncertainty. We assume that the 

functions (𝑄𝑓𝑘(⋅), 𝑄𝑠𝑘(⋅)) are differentiable and that [

𝜕[∑ 𝑄𝑓𝑘𝑘∈𝐾 (𝒑𝑡,⋅)]

𝜕𝑝𝑓𝑚𝑡

𝜕[∑ 𝑄𝑓𝑘𝑘∈𝐾 (𝒑𝑡,⋅)]

𝜕𝑝𝑠𝑡

𝜕[∑ 𝑄𝑠𝑘𝑘∈𝐾 (𝒑𝑡,⋅)]

𝜕𝑝𝑓𝑚𝑡

𝜕[∑ 𝑄𝑠𝑘𝑘∈𝐾 (𝒑𝑡,⋅)]

𝜕𝑝𝑠𝑡

] is 

a positive definite matrix, i.e. that aggregate supplies respond positively to rising prices. The 

market clearing conditions are 
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∑ 𝑄𝑓𝑘𝑘∈𝐾 (𝒑𝑡, 𝒑𝑡−1, … , 𝑝𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) = 0  (1a) 

and 

∑ 𝑄𝑠𝑘𝑘∈𝐾 (𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) = 0. (1b) 

The solution of equations (1a)-(1b) for 𝒑𝑡 are the market-clearing prices denoted by 

𝒑𝑡 = [
𝑝𝑓𝑚𝑡

𝑝𝑠𝑡
] =  [

𝑔𝑓(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡)

𝑔𝑠(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡)
].  (2) 

Equation (2) provides a representation of the joint price dynamics in both the spot 

market and the futures market. Either equations (1) or equation (2) are valid models of price 

determination. The econometric analysis presented in this paper will rely on equation (2) for 

a simple reason: our empirical analysis is based on weekly price data, but weekly data are not 

available on the quantities that appear in equation (1).  

Since equation (2) is the solution of equations (1a)-(1b), price dynamics reflects the 

behavior of market participants.4 In the presence of dynamics and uncertainty, marketing 

decisions depend on the information available to the market participants. For the 𝑘-th agent, 

the decision rules 𝑄𝑓𝑘𝑚𝑡 = 𝑄𝑓𝑘 (𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡)  and 𝑄𝑠𝑘𝑡 =

𝑄𝑠𝑘(𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) depend on the information available at time 𝑡 to the 𝑘-th 

agent, 𝑘 ∈ 𝐾.  

Much interest has focused attention on the role of speculation in market activities (e.g., 

Kaldor, 1939；Du et al., 2011; Sockin and Xiong, 2015). In general, speculation involves 

market participants acting on arbitrage opportunities. An economic analysis of speculation is 

presented in Appendix A. Three special cases are relevant in our analysis. In the first case, the 

𝑘-th agent is involved in storage activities in the spot market. In this context, 𝑄𝑠𝑘𝑡 is the 
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quantity purchased at time 𝑡, stored and sold back on the spot market at time (𝑡 + 1). Using 

equation (A1) in Appendix A with 𝑄𝑘𝑡 = 𝑄𝑠𝑘𝑡, 𝑝𝑎𝑡 = 𝑝𝑠𝑡, 𝜏 = 1 and 𝑝𝑏,𝑡+1 = 𝑝𝑠𝑡+1, the 

optimal choice of 𝑄𝑠𝑘𝑡 ≠ 0 satisfies   

 𝑟 𝐸𝑘𝑡(𝑝𝑠𝑡+1) − 𝑝𝑠𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ .  (3a) 

where 𝑟 ∈ (0, 1)  is a discount factor, 𝐸𝑘𝑡  is the expectation operator based on the 

information available to the 𝑘-th agent at time 𝑡, 𝐶𝑘𝑡
′  is the marginal cost of storage and 

𝑅𝑘𝑡
′  is the marginal risk premium. The solution of (3a) for 𝑄𝑠𝑘𝑡 ≠ 0 gives the 𝑘-th agent’s 

net supply function 𝑄𝑠𝑘(𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) mentioned above.  

Equation (3a) shows that storage activities generate an intertemporal price arbitrage in 

the spot market (e.g., Working, 1949; Fama and French, 1987; Routledge et al., 2002). In 

general, the exercise of arbitrage limits the possibilities of large changes in spot price. Indeed, 

if a large price increase was anticipated, then the 𝑘-th agent would have incentives to buy the 

commodity on the spot market at time 𝑡 (thus putting upward pressure on 𝑝𝑠𝑡) to sell it back 

at time (𝑡 + 1) (thus putting downward pressure on price 𝑝𝑠𝑡+1). But two qualifications 

apply. First, the price increase must be anticipated, meaning that the incentive to store would 

not hold for unanticipated price change, thus stressing the importance of information. Second, 

In cases where [𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ] is large, then there would be no incentive to store when 

[𝑟 𝐸𝑘𝑡(𝑝𝑠𝑡+1) − 𝑝𝑠𝑡]  is small or negative. This would reflect situations where storage 

activities would have no implications for intertemporal arbitrage for the spot price 𝑝𝑠. Finally, 

from equation (3a), the properties of the marginal cost of storage 𝐶𝑘𝑡
′  and of the marginal 

risk premium 𝑅𝑘𝑡
′  play a role (Szymanowska et al., 2014). As shown in Appendix A (in 
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equation (A2)), under risk aversion, the marginal risk premium 𝑅𝑘𝑡
′  is positive when 𝑄𝑠𝑘𝑡 >

0 but negative when 𝑄𝑠𝑘𝑡 < 0. Thus, 𝑅𝑘𝑡
′  depends on the trade position of the 𝑘-th agent, 

implying that it cannot be treated as a constant. More generally, when [𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ] is not 

constant (e.g., the case of increasing marginal cost of storage or of time-varying marginal risk 

premium), then price arbitrage condition given in (3a) would vary depending on market 

conditions, implying that a time-varying relationship between 𝑝𝑠𝑡 and 𝐸𝑘𝑡(𝑝𝑠𝑡+1). We will 

empirically investigate how price dynamics varies under different market conditions below.  

In the second case, the 𝑘-th agent is a speculator involved in intertemporal arbitrage 

activities in the futures market. Let 𝑄𝑓𝑘𝑚𝑡 be a futures contract purchased at time 𝑡 and sold 

on the futures market at time (𝑡 + 1). Using equation (A1) in Appendix A with 𝜏 = 1,

𝑄𝑘𝑡 = 𝑄𝑓𝑘𝑚𝑡, 𝑝𝑎𝑡 = 𝑝𝑓𝑚𝑡 and 𝑝𝑏,𝑡+1 = 𝑝𝑓𝑚,𝑡+1, the choice of 𝑄𝑓𝑘𝑚𝑡 ≠ 0 satisfies   

 𝑟 𝐸𝑘𝑡(𝑝𝑓𝑚,𝑡+1) − 𝑝𝑓𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ,  (3b) 

where 𝐶𝑘𝑡
′  is the marginal cost of 𝑄𝑓𝑘𝑚𝑡 and 𝑅𝑘𝑡

′  is the associated marginal risk premium 

for the 𝑘-th agent. The solution of (3b) for 𝑄𝑓𝑘𝑚𝑡 ≠ 0 gives the 𝑘-th agent’s net supply 

function 𝑄𝑓𝑘(𝒑𝑡, 𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝑚, 𝒙𝑡, 𝒆𝑡)  mentioned above. Equation (3b) states an 

intertemporal arbitrage condition for the futures price 𝑝𝑓: the expected discounted change in 

price [𝑟 𝐸𝑘𝑡(𝑝𝑓𝑚,𝑡+1) − 𝑝𝑓𝑚𝑡] is equal to the marginal cost plus the marginal risk premium: 

𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ . It indicates that speculation generates an intertemporal price arbitrage in the futures 

market, which limits the possibilities of large changes in the futures price. Again, the 

implications of such arbitrage opportunities for the dynamics of 𝑝𝑓 depend on the magnitude 

of the marginal cost 𝐶𝑘𝑡
′  and of the marginal risk premium 𝑅𝑘𝑡

′ .  
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In the third case, the 𝑘-th agent is involved in arbitrage activities between the futures 

market and the spot market. Let 𝑄𝑘𝑡 be the quantity purchased on the futures market at price 

𝑝𝑓𝑚𝑡 and settled by selling it on the spot market at time (𝑡 + 𝑚) at price 𝑝𝑠𝑡+𝑚. Using 

equation (A1) in Appendix A with 𝜏 = 𝑚, 𝑝𝑎𝑡 = 𝑝𝑓𝑚𝑡, and 𝑝𝑏,𝑡+1 = 𝑝𝑠𝑡+𝑚, the optimal 

choice of 𝑄𝑘𝑡  ≠ 0 satisfies   

𝑟𝑚 𝐸𝑘𝑡(𝑝𝑠𝑡+𝑚) − 𝑝𝑓𝑚𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ .  (3c) 

where 𝐶𝑘𝑡
′  is the marginal cost of 𝑄𝑘𝑡 and 𝑅𝑘𝑡

′  is the associated marginal risk premium for 

the 𝑘-th agent. Equation (3c) states an arbitrage condition between the futures price 𝑝𝑓 and 

the spot price 𝑝𝑠 : the expected price difference [𝑟𝑚 𝐸𝑘𝑡(𝑝𝑠𝑡+𝑚) − 𝑝𝑓𝑚𝑡]  equals the 

marginal cost plus the marginal risk premium 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ . When 𝑚 → 0, equation (3c) yields   

𝐸𝑘𝑡(𝑝𝑠𝑡) − lim
m→0

𝑝𝑓𝑚𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ .   (3c’) 

When 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ = 0, equation (3c’) would imply that lim
m→0

𝑝𝑓𝑚𝑡 = 𝐸𝑘𝑡(𝑝𝑠𝑡), i.e. 

that the futures price and spot price would converge at the maturity of the futures contract. 

This suggests the existence of cointegration relationship between the futures and spot markets 

(e.g., Wang and Ke, 2005; Hernandez and Torero, 2010). While previous analyses have 

typically focused on linear cointegration, we will study nonlinear quantile cointegration 

relationships and investigate how such relationships vary with market conditions.  

But equation (3c) also shows that such convergence properties would not hold when 

𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ≠ 0. This indicates two scenarios where non-convergence would occur: 1/ when 

transaction cost (e.g., delivery cost) is high and 𝐶𝑘𝑡
′ > 0; and 2/ when uncertainty about the 

spot price remains around delivery time and 𝑅𝑘𝑡
′ ≠ 0. Evidence of non-convergence between 
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𝑝𝑠𝑡 and lim
m→0

𝑝𝑓𝑚𝑡 has been explored in the literature (Hoffman and Aulerich, 2013; Garcia 

et al., 2014). These issues will be investigated in our empirical analysis presented below.   

Finally, in situations where 𝑚 = 1  and  𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ = 0  in equation (3c), the 

following price arbitrage condition would hold: 𝑟 𝐸𝑘𝑡(𝑝𝑠𝑡+1) = 𝑝𝑓1𝑡. Substituting this result 

into equation (3a) yields  

𝑝𝑓1𝑡 − 𝑝𝑠𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ,   (4) 

stating that the basis5 (defined as (𝑝𝑓1𝑡 − 𝑝𝑠𝑡)) is equal to 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ , where 𝐶𝑘𝑡
′  is the 

marginal cost of storage and 𝑅𝑘𝑡
′  is the associated marginal risk premium. These results are 

well known in the literature (e.g., Working, 1949; Telser, 1958; Fama and French, 1987). 

Equation (4) gives the standard result that the basis (𝑝𝑓1𝑡 − 𝑝𝑠𝑡) can be interpreted as the 

“price of storage”: it is the market signal guiding storage activities. When 𝑅𝑘𝑡
′ = 0 and 

𝐶𝑘𝑡
′ > 0 , equation (4) reduces to 𝑝𝑓𝑚𝑡 − 𝑝𝑠𝑡 = 𝐶𝑘𝑡

′ , indicating that the basis would be 

positive in the presence of storage activities. When (𝑝𝑓1𝑡 − 𝑝𝑠𝑡) is observed to be negative, 

the presence of this “inverse-carrying charge” has generated some controversy in the literature. 

Working (1949) has argued this reflects a “convenience yield” that provides incentives to 

keep positive inventory even under any declining prices. But allowing for risk aversion, 

equation (4) provides an alternative interpretation. As stated in equation (A2) in Appendix A, 

under risk aversion, 𝑅𝑘𝑡
′  can be either positive or negative depending on the market position 

of the 𝑘-th agent. It follows that 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′  can be negative under some scenarios (e.g., when 

elevators buy and store grains at harvest time), in which case the basis (𝑝𝑓1𝑡 − 𝑝𝑠𝑡) would 

also be negative. This discussion indicates arbitrage opportunities across markets would imply 
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that the basis exhibits time-varying patterns. These issues are explored empirically next.  

3. Econometric method  

This section discusses the econometric method used to model the price distributions 

of futures and spot prices. Our analysis of futures price 𝑝𝑓 and the spot price 𝑝𝑠 is based 

on equation (2) discussed above, stating that 𝒑𝑡 = 𝒈(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡), where 𝒑𝑡 =

(𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡) . Assume that the function 𝒈(⋅)  is differentiable, that 𝒆𝑡  is a serially 

independent random vector with distribution function 𝐷(𝒗) = 𝑃𝑟𝑜𝑏(𝒆𝒕 ≤ 𝒗), and that 𝐷(𝒗) 

is absolutely continuous. In this context, equation (2) is a general autoregressive process of 

order 𝑛 representing the stochastic dynamics of 𝒑𝑡 = (𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡). It allows for nonlinear 

dynamics along with own-price and cross-price effects.  

In general, from equation (2), the joint distribution function of (𝑝𝑓𝑚𝑡, 𝑝𝑠𝑡) is  

𝐹(𝒑 |𝑷𝑡−1, 𝒙𝑡) =  𝑃𝑟𝑜𝑏[𝒈(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) ≤ 𝒑].  (5)   

where 𝑷𝑡−1 = (𝒑𝑡−1, … 𝒑𝑡−𝑛). . Equation (5) provides all the information relevant to the 

analysis of (𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡) and its dynamics. This section discusses an empirically tractable way 

to estimate equation (5). While 𝐹(𝒑 |𝑷𝑡−1, 𝒙𝑡)  in (5) is the joint distribution function of 

(𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡), we are interested in exploring the associated marginal distribution functions  

𝐹𝑓(𝑝𝑓|𝑷𝑡−1, 𝒙𝑡) =  𝑃𝑟𝑜𝑏[𝒈𝑓(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) ≤ 𝑝𝑓].  (6a) 

𝐹𝑠(𝑝𝑠|𝑷𝑡−1, 𝒙𝑡) =  𝑃𝑟𝑜𝑏[𝒈𝑠(𝒑𝑡−1, … , 𝒑𝑡−𝑛, 𝒙𝑡, 𝒆𝑡) ≤ 𝑝𝑠].  (6b) 

From Sklar’s theorem (Sklar, 1959; Patton, 2006), consider the following relationship 

between the marginal distributions (𝐹𝑓 , 𝐹𝑐) and the joint distribution 𝐹. 

𝐹(𝒑 | 𝑷𝑡−1, 𝒙𝑡) =  𝐶[𝐹𝑓(𝑝𝑓| 𝑷𝑡−1, 𝒙𝑡), 𝐹𝑠(𝑝𝑠| 𝑷𝑡−1, 𝒙𝑡)| 𝒙𝑡],       (7) 
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where 𝐶[𝐹𝑓 , 𝐹𝑠| ·]  is a copula corresponding to the mapping (𝐹𝑓 , 𝐹𝑠) →  [0, 1]  (Nelson, 

2006). Our analysis will rely on equation (7) and proceed in two steps: first, estimate the 

marginal distributions 𝐹𝑠 in (6a) and 𝐹𝑓 in (6b) using a QVAR model; second, evaluate the 

copula 𝐶[𝐹𝑓 , 𝐹𝑠| ·]  and use (7) to recover the joint distribution 𝐹 . hhis two-step QVAR-

Copula approach will be used below in studying the dynamics of (𝑝𝑓𝑚𝑡 , 𝑝𝑠𝑡).  

Note the generality of this approach. First, the estimation of marginal distributions 

allows for own-price and cross-price effects and nonlinear dynamics. And it allows for the 

effects of other variables (as captured by the variables 𝒙𝑡). Second, the copula allows for 

arbitrary contemporaneous codependence between 𝑝𝑓𝑚𝑡  and 𝑝𝑠𝑡  (see Nelson, 2006) and 

the codependence to vary with 𝒙𝑡.  

3.1 Estimating marginal distributions 

Our first step involves estimating the marginal distributions for 𝑝𝑓𝑚𝑡  and 𝑝𝑠𝑡 . 

Consider the associated quantile functions defined as the inverse of the corresponding 

marginal distributions. hhe quantile function for 𝑝𝑓𝑚𝑡  evaluated at 𝑞𝑓 ∈ [0, 1]  is 

𝑝𝑓𝑞(𝑞𝑓 |𝑷𝑡−1, 𝒙𝑡) ≡ 𝑖𝑛𝑓𝑝𝑓
  {𝑝𝑓: 𝐹𝑓(𝑝𝑓|𝑷𝑡−1, 𝒙𝑡) ≥ 𝑞𝑓} . And the quantile function for 𝑝𝑠𝑡 

evaluated at 𝑞𝑠 ∈ [0, 1]  is 𝑝𝑠𝑞(𝑞𝑠 |𝑷𝑡−1, 𝒙𝑡) ≡ 𝑖𝑛𝑓𝑝𝑠
  {𝑝𝑠: 𝐹𝑠(𝑝𝑠| 𝑷𝑡−1, 𝒙𝑡) ≥ 𝑞𝑠} . Nett, 

consider the following specification for these quantile functions  

𝑝𝑓𝑞(𝑞𝑓 |𝒀𝑡−1, 𝒙𝑡) =  𝜷
0,𝑓

(𝑞
𝑓
) + 𝜷

1,𝑓
(𝑞

𝑓
) 𝑷𝑡−1 + 𝜷

2,𝑓
(𝑞

𝑓
) ℎ𝑓(𝑷𝑡−1, 𝒙𝑡) (8a) 

𝑝𝑠𝑞(𝑞𝑠 |𝑷𝑡−1, 𝒙𝑡) =  𝜷
0,𝑠

(𝑞
𝑠
) + 𝜷

1,𝑠
(𝑞

𝑠
) 𝑷𝑡−1 + 𝜷

2,𝑠
(𝑞

𝑠
) ℎ𝑠(𝑷𝑡−1, 𝒙𝑡)   (8b) 

where the 𝜷(𝑞)’s are parameters to be estimated and (ℎ𝑠(⋅), ℎ𝑓(⋅)) are known functions. 

Equations (8a)-(8b) constitute a quantile vector autoregression (QVAR) model providing a 
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fletible representation of the marginal distributions of (𝑝𝑓𝑚𝑡, 𝑝𝑠𝑡) and the underlying price 

dynamics. Indeed, when 𝜷2 = 0 and 𝜷1(𝑞) does not vary with 𝑞, then (8a)-(8b) reduce to 

a standard vector autoregression (VAR) model commonly used in time series analysis (e.g., 

Hamilton, 1994; Enders, 2010). Note that allowing 𝜷0(𝑞) to vary with 𝑞 does not impose 

a priori restrictions on the shape of the distribution function (e.g., it allows for any skewness 

or kurtosis). In addition, allowing for 𝜷1(𝑞) to vary with 𝑞 permits dynamics to affect the 

variance or skewness of prices. Finally, allowing 𝜷2(𝑞) to be non-zero allows for nonlinear 

dynamics when the ℎ  functions in (8a)-(8b) are nonlinear in 𝑷𝑡−1  or include interaction 

effects between 𝑷𝑡−1 and 𝒙𝑡.  

Following Koenker (2005) and Koenker and Xiao (2006), equations (8a)-(8b) can be 

estimated by quantile regression. Consider a sample of T observations denoted as 

(𝑝𝑓𝑡, 𝑝𝑠𝑡, 𝑷𝑡−1, 𝒙𝑡 ), 𝑡 ∈ {1, … , 𝑇} . hhe parameters 𝜷 ’s in (8a)-(8b) can be estimated as 

follows  

                 𝜷𝑖
𝑒(𝑞𝑖) ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝛽  {∑ 𝜌𝑞𝑖

𝑇
𝑡=1 (𝑝𝑖𝑡 − 𝑝𝑖𝑞(𝑞𝑖|𝑷𝑡−1, 𝒙𝑡)}, 𝑖 ∈ {𝑓, 𝑠},  (9) 

where 
𝑞𝑖

(𝑤) =  𝑤 [𝑞𝑖 –  𝐼(𝑤 < 0)] , 𝐼(·)  is an indicator function and 𝑝𝑖𝑞(𝑞𝑖 |𝑷𝑡−1, 𝒙𝑡)  is 

parametrized as in (8a)-(8b). As shown in Koenker and Xiao (2004, 2006), the quantile 

estimator given in (9) provides consistent estimates of the parameters under general 

conditions. Yet, asymptotic properties of the estimator become non-standard in the presence 

of unit roots. On that basis, we rely on bootstrapping in conducting hypothesis testing.  
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Based on the QVAR estimates discussed above, we are interested in exploring the 

analysis of price dynamics. Note that equation 𝒑𝒕 = 𝒈(𝒑𝒕−𝟏, … , 𝒑𝒕−𝒏, 𝒙𝒕, 𝒆𝒕) in (2) can be 

alternatively written as the first-order difference equation  

  𝑷𝒕 ≡ [

𝒑𝒕

𝒑𝒕−𝟏 
⋮

𝒑𝒕−𝒏+𝟏

] = [

𝒈(𝒑𝒕−𝟏, … , 𝒑𝒕−𝒏, 𝒙𝒕, 𝒆𝒕)
𝒑𝒕−𝟏 

⋮
𝒑𝒕−𝒏+𝟏

] = 𝑮(𝑷𝒕−𝟏, 𝒙𝒕, 𝒆𝒕).  (10) 

Under differentiability, consider the matrit 𝑫𝑮(𝑷𝒕−𝟏, 𝒙𝒕, 𝒆𝒕) ≡ 𝝏𝑮(𝑷𝒕−𝟏, 𝒙𝒕, 𝒆𝒕)/

𝝏𝑷𝒕−𝟏. and its eigenvalues (𝜆1, 𝜆2, … ) evaluated at point (𝑷𝒕−𝟏, 𝒙𝒕, 𝒆𝒕). hhe modulus of the 

dominant eigenvalue |𝜆1|  provides useful information about dynamics of 𝒑𝒕  in the 

neighborhood of the (𝑷𝒕−𝟏, 𝒙𝒕, 𝒆𝒕). Under nonlinear dynamics, the eigenvalues (or roots) vary 

with the valuation point. hhe dominant root then provides information about local dynamics: 

prices are locally stable (unstable) in the neighborhood of the evaluation point when the 

modulus of dominant root |𝜆1| is less than (greater than) 1 (Sayama, 2015, p. 94-95). In this 

case, |𝜆1| measures the speed of price adjustments: log (|𝜆1|) can be interpreted as the local 

rate of divergence in prices along a forward path. In a stochastic world, these evaluations can 

vary depending on stochastic shocks. In our QVAR model, this translates into the question: 

does the dominant root vary across quantiles? If it does not, then price dynamics does not 

depend on stochastic shocks (e.g., as found in standard linear VAR models). If it does, then 

price dynamics would vary with stochastic shocks, stressing the need to distinguish between 

“positive” versus “negative” shocks. hhis discussion indicates the general fletibility of our 

approach. It ettends previous research exploring regime-switching models or smooth 

transitions dynamics (e.g., the TAR model of Caner and Hansen (2001) or ESTAR model of 
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Kapetanios et al. (2003)). As further discussed below, our approach allows the investigation 

of how dynamic stability can vary across quantiles and across market situations.  

Our QVAR estimate can also be used to evaluate the long-run relationship between 

𝑝𝑓 and 𝑝𝑠. ho see that, consider a first-order haylor series approtimation of equations (8a)-

(8b) with respect to lagged prices evaluated at point 𝒛 = (𝒀𝑡−1, 𝒙𝑡)  

𝒑𝑡(𝒒) ≈ 𝑨(𝒒, 𝒛) + ∑ 𝑩𝑗(𝒒, 𝒛) 𝒑𝑡−𝑗
𝑛
𝑗=1   (11a) 

where 𝒒 = (𝑞
𝑠
, 𝑞𝑓) ∈ [0, 1]2. Equation (11a) can be equivalently written in first differences  

Δ𝒑𝑡(𝒒) ≈ 𝑨(𝒒, 𝒛) + 𝜫(𝒒, 𝒛) 𝒑𝑡−1 + ∑ 𝜞𝑗(𝒒, 𝒛) Δ𝒑𝑡−𝑗
𝑛−1
𝑗=1 ,  (11b) 

where Δ𝒑𝑡 = 𝒑𝑡 − 𝒑𝑡−1 ,  Δ𝒑𝑡−𝑗 = 𝒑𝑡−𝑗 − 𝒑𝑡−𝑗−1 , 𝜫(𝒒, 𝒛) = ∑ 𝑩𝑗(𝒒, 𝒛) − 𝑰𝑛
𝑛
𝑗=1   and 

𝜞𝑗(𝒒, 𝒛) = − ∑ 𝑩𝑘(𝒒, 𝒛)𝑛
𝑘=𝑗+1 , 𝑗 = 1, … , 𝑚 − 1. When the specification in (8a)-(8b) is linear 

in lag prices, then equations (11a)-(11b) are globally valid. If in addition, the lagged 

coefficient 𝑩𝑗  do not vary with 𝒒 , then the matrit 𝜫.. is a constant. hhis is the scenario 

evaluated by Engle and Granger (1987) and Johansen (1995) in their investigation of 

cointegration: cointegration then arises when the matrit 𝜫  has rank 1, and the long run 

relationship between 𝑝𝑠 and 𝑝𝑓 is given by the right eigenvector associated with the largest 

root of 𝜫 (Engle and Granger, 1987; Johansen, 1995). Our analysis ettends this approach in 

two ways: the matrit 𝜫(𝒒, 𝒛)  can vary with the quantiles 𝒒 ; and it can vary with the 

evaluation point. 𝒛 . hhese are scenarios of nonlinear cointegration (e.g., Pizzi, 2010; 

Tjøstheim, 2020). The situation where 𝜫(𝒒, 𝒛) varies with the quantiles 𝒒 means that the 

nature of price adjustments toward their long run equilibrium depends on the nature of the 

shocks. And having 𝜫(𝒒, 𝒛)  varying with the evaluation point 𝒛  means that changing 
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market conditions (represented by 𝒛) affects how the markets adjust in the long term. In 

either case, the right eigenvector associated with the largest root of 𝜫(𝒒, 𝒛) reflects how the 

longer run dynamics of (𝑝𝑓, 𝑝𝑠) can change with (𝒒, 𝒛)..hhese issues will be investigated 

in our empirical analysis. 

3.2 Estimating the joint price distribution 

Once the marginal distributions (𝐹𝑓 , 𝐹𝑠) in (6a)-(6b) (or their associated quantile 

functions in (8a)-(8b)) have been estimated, we can obtain the joint distribution using the 

copula 𝐹 = 𝐶(𝑞𝑓 , 𝑞𝑠| 𝒙𝑡) in equation (7). This can be done using parametric as well as 

nonparametric methods. See Nelsen (2006) or Joe (2014) for an overview of alternative 

approaches. In our case, the first step quantile estimation gives consistent estimates of 𝜷𝑖
𝑒(𝑞𝑖) 

in (9) and corresponding quantiles 𝑝𝑖𝑞
𝑒 (𝑞𝑖 |𝑷𝑡−1, 𝒙𝑡) in (8), 𝑖 ∈ {𝑓, 𝑠}. Following Chavas (2020), 

solving 𝑝𝑖𝑞
𝑒 (𝑞𝑖 |𝑷𝑡−1, 𝒙𝑡) = 𝑝𝑖𝑡 for 𝑞𝑖 gives consistent estimates of 𝑞𝑖𝑡

𝑒 , 𝑖 ∈ {𝑓, 𝑠}, 𝑡 ∈ {1, … , 𝑇}. In 

turn, in a second step, we use the 𝑞𝑖𝑡
𝑒 ’s to estimate the copula 𝐶(𝑞𝑓 , 𝑞𝑠| 𝒙𝑡) in (7). hhis is done by 

estimating the conditional distribution function 𝐷(𝑞𝑓|𝑞𝑠, 𝒙𝑡) = 𝑃𝑟𝑜𝑏[𝑞𝑖𝑡
𝑒 ≤ 𝑞𝑓| 𝑞𝑖𝑠

𝑒 = 𝑞𝑠, 𝒙𝑡]. Under 

differentiability, this conditional distribution satisfies 𝐷(𝑞𝑓| 𝑞𝑠, 𝒙𝑡) = 𝜕𝐶(𝑞𝑓 , 𝑞𝑠| 𝒙𝑡)/𝜕𝑞𝑠 

(Joe, 2015, p. 30), or equivalently 𝐶(𝑞𝑓 , 𝑞𝑠| 𝒙𝑡) = ∫ 𝐷(𝑞𝑓| 𝑞, 𝒙𝑡)
𝑞𝑠

0
𝑑𝑞, making it clear that 

the conditional distribution 𝐷(𝑞𝑓|𝑞𝑠, 𝒙𝑡)  provides all the information related to the 

contemporaneous codependence between 𝑝𝑓 and 𝑝𝑠. Below, going beyond Chavas (2020), we 

permit the copula to change with 𝒙𝑡 . Letting 𝒙𝑡 = 𝑚𝑎 , we allow the variable “time to 

maturity” 𝑚𝑎 to affect the copula and consider the following specification6  

𝐷(𝑞𝑓|𝑞𝑠, 𝑚𝑎) =  γ0(𝑞𝑓) + γ1(𝑞𝑓) 𝑞𝑠 + γ2(𝑞𝑓) 𝑞𝑠
s + 𝛾3(𝑞𝑓) 𝑚𝑎,  (12) 
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where we include both a linear term 𝑞𝑠 and a nonlinear term defined as 𝑞𝑠
s = (𝑞

𝑠
− 0.5)

2
. 

Using (𝑞𝑓
𝑒 , 𝑞𝑠

𝑒) and applying quantile regression to (12) yield consistent estimates of the 

parameters 𝜸𝑒 and of the associated distribution function 𝐷𝑒(𝑞𝑓|𝑞𝑠, 𝑚𝑎) in (12). Noting 

that the distribution of the second-step estimates depends on the statistical properties in the 

first step (Murphy and Topel, 2002), we employ the empirical bootstrap for hypothesis testing.  

Finally, from equations (7) and (12) along with 𝐶(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) =

∫ 𝐷(𝑞𝑓| 𝑞, 𝑚𝑎)
𝑞𝑠

0
𝑑𝑞, the codependence between futures and spot prices at any given quantile 

set (𝑞𝑓,𝑞𝑠) can be measured by:  

𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) ≡ 𝐶(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) − 𝑞𝑓 ⋅  𝑞𝑠.  (13) 

Conditional on 𝑚𝑎 and evaluated at point (𝑞𝑓 , 𝑞𝑠), 𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) = 0 when the futures 

price and spot price are contemporaneously independent. Alternatively, 𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) >

0 (< 0) implies positive (negative) codependence of 𝑝𝑓𝑚𝑡 and 𝑝𝑠𝑡. The estimates (𝑞𝑓
𝑒 , 𝑞𝑠

𝑒) 

are used to obtain 𝐶𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) ≡ ∫ 𝐷𝑒(𝑞𝑓| 𝑞, 𝑚𝑎)
𝑞𝑠

0
𝑑𝑞  and 𝑅𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) ≡

𝐶𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) − 𝑞𝑓 ⋅  𝑞𝑠  as consistent estimates of 𝐶(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎)  and 𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) , 

respectively. Using bootstrapping, empirical testing for whether 𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) = 0 is a test 

of the null hypothesis of independence evaluated at (𝑞𝑓 , 𝑞𝑠,ma). Equation (13) can also shed 

light on the nature of dependence in the tails of the marginal distributions. Using copula, the 

investigation of tail dependence has been examined in previous research (e.g., Joe, 2014). The 

importance of tail dependence and its role in understanding cross-market pricing patterns have 

been explored by Patton (2006) and Reboredo (2012) using a parametric approach. We want 

to stress two advantages of our semi-parametric approach: 1/ it is flexible in the sense that it 
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allows for arbitrary codependence; and 2/ it does not require imposing a priori restrictions on 

the shape of the copula. The usefulness of our QVAR-Copula approach is illustrated next in 

an application to futures price and spot price in the US soybean market.  

4. Data 

Our analysis relies on weekly futures and spot prices in the US soybean markets over 

the last four decades of 1980-2019. The weekly spot prices were collected from the Historic 

Grain Reports (HGR) of the Iowa Department of Agricultural and Land Stewardship (IDALS). 

As stated by Fama and French (1987), good spot-price data are not available for many 

commodities. The HGR reports representative soybean spot price data consistently recorded 

in Iowa over the last few decades. For our research purposes (e.g., studying the futures-spot 

basis), it is common to rely on representative regional spot prices as national averaging tends 

to weaken the underlying futures-spot linkages (e.g., Garcia et al., 2014). The weekly Chicago 

Board of Trade (CBOT) futures closing prices over the same period were collected from the 

Wind financial database. To match the basis data reported from IDALS, we choose the 

continuous futures price that is conducted using the front-month rolling method, which rolls 

nearby futures contracts on expiration dates in contract months.7 These data are used to 

evaluate the underlying futures-spot price relationships in the soybean markets.  

Table 1 reports the summary statistics of price and other variables used in our analysis. 

While original prices are expressed in US dollar per bushel, our empirical study is based on 

the logarithm of prices. Table 1 shows that the futures price has a mean value of 1.994, slightly 

higher than that of the spot price of 1.938. Other moments (standard deviation, skewness, 
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kurtosis) show similar patterns: moments are generally higher for futures price than spot price. 

 Figure 1 reports the trajectories of soybean futures and spot price over the last four 

decades. The prices exhibit large volatility throughout the sample period. Two important 

factors are worth noting: 1/ the rise of soybean production in Brazil starting in the 1990s, and 

2/ the significant impacts of US biofuel policy starting in 2005. Since the late 1990s, Brazil 

has emerged as a major soybean producer and exporter, resulting in significant changes in 

global soybean supply and prices (Cattlelan and Agnol, 2018). Also, dramatic price changes 

have occurred in response to US biofuel policy after 2005, which contributed to price swings 

during the period of 2007-2014 (Du et al., 2011). As shown in Figure 1, the co-movement of 

soybean futures and spot prices generally holds. However, recent research has pointed out the 

growing difference between contemporaneous futures and spot prices (the basis), reflecting 

convergence problems in agricultural futures markets (Hoffamn and Aulerich, 2013; Garcia 

et al., 2015). The evolving relationship between futures and spot prices are examined next.    

5. Econometric estimation 

We employ the QVAR-Copula approach to investigate the dynamic linkages between 

US soybean futures and spot prices. Expanding on previous research (e.g., Garbade and Silber, 

1983; Hernandez and Torero, 2010), our QVAR model considers both linear and nonlinear 

dynamic effects. We introduce nonlinearity by including the square of the difference between 

lagged price and its median (i.e., 𝑝𝑖,𝑡−𝑗
𝑠 = (𝑝𝑖,𝑡−𝑗 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑝𝑖,𝑡−𝑗))2 , 𝑖 ∈ (𝑓, 𝑠)), which 

reflects how extreme prices affect the price distributions.  

Other key variables include the “time to maturity” variable 𝑚𝑎  measuring the 
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number of weeks to maturity in the futures contract. As shown in Table 1, in our sample, 𝑚𝑎 

takes the values from zero to nine, with a mean value of 3.499. We also include the interaction 

of 𝑚𝑎 and lagged futures price (𝑃𝑓1) to capture the interaction between past price and futures 

contract characteristics.8 Quarterly dummies (𝑄1𝑡, 𝑄2𝑡 , 𝑄3𝑡) are also introduced to reflect 

seasonality. To capture the structural changes caused by technological and institutional 

change, Brazil production expansion and biofuel policy (Du et al., 2011; Cattelan et al., 2018), 

we define three time trends: an overall time trend 𝑡𝑡, a linear trend 𝑡𝑡1 starting in 1998 and 

a linear trend 𝑡𝑡2 starting in 2005.9 The number of price lags n that enter equations (8a) and 

(8b) were chosen using the Bayesian Information Criterion (BIC). In this study, BIC 

suggested that the QVAR(2) model provides the best fit to the data.  

5.1 Estimates of marginal distributions  

Based on the specified QVAR(2) model, we estimated the marginal price distributions. 

Tables 2 and 3 report the QVAR estimates for the futures price 𝑝𝑓  and spot price 𝑝𝑠 , 

respectively, under selected quantiles: q=(0.1, 0.3, 0.5, 0.7, 0.9). According to the pseudo-𝑅2 

proposed by Koenker and Machado (1999), the pseudo-𝑅2 values in our model lies within 

the range of 0.892-0.935, indicating high goodness-of-fit. In these tables, lagged prices are 

denoted using subscript (e.g., 𝑝𝑠𝑗 = 𝑝𝑠𝑡−𝑗, 𝑗 ∈ {1,2}). First, we find that the lag own price 

effects are often statistically significant in both the futures and spot price equations, 

documenting the importance of dynamic adjustments in the price distributions. Table 2 shows 

strong positive short-run price response of 𝑝𝑓  to 𝑝𝑓1 , especially in the upper quantiles: 

𝛽𝑝𝑓1
> 1 in the higher quantiles (q=0.7, 0.9) while 𝛽𝑝𝑓1

< 1 in the lower quantiles (q=0.1, 
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0.3), indicating a different short term response to downside shocks (compared to upside 

shocks). Table 3 also shows strong positive response of 𝑝𝑠 to 𝑝𝑠1, but with stronger short-

run price response to 𝑝𝑠1 in the lower quantiles than in the upper quantiles. These results 

indicate the presence of heterogeneity in the dynamic response to shocks: the responses to 

shocks vary both across markets and with the nature of the shocks (i.e., downside shocks 

versus upside shocks). Tables 2-3 report differences in dynamic cross-price effects: the effects 

of 𝑝𝑠1 on 𝑝𝑓 are positive in all quantiles and often statistically significant; and they are 

typically stronger than the effects of 𝑝𝑓1 on 𝑝𝑠. And the effects of 𝑝𝑠2 on 𝑝𝑓 and 𝑝𝑠 are 

all negative, thus dampening the positive 𝑝𝑠1 effects. The implications of these estimates for 

longer term price adjustments are further explored below.  

Second, the nonlinear effects of (𝑝𝑓1
𝑠, 𝑝𝑓2

𝑠) on 𝑝𝑓 and of (𝑝𝑠1
𝑠, 𝑝𝑠2

𝑠) on 𝑝𝑠 are 

statistically significant in the low and high quantiles, i.e., q=(0.1, 0.3, 0.9). This is an 

important finding of this study, uncovering that nonlinear dynamics tend to occur in the tails 

of the distribution. hhird, of special interest is the “time to maturity” variable 𝑚𝑎 and its 

interaction with lagged futures price (𝑚𝑎 ⋅ 𝑝𝑓1). Tables 2-3 show that the effects of these 

variables are statistically significant for many quantiles, indicating that “time to maturity” 

affects the dynamics of the distribution of both 𝑝𝑓 and 𝑝𝑠. Fourth, consistent with previous 

research (e.g., Du et al., 2011), we find evidence of seasonality and intertemporal structural 

changes as the seasonal dummies and time trends are statistically significant at least in some 

quantiles. For instance, we find 𝑡𝑡1  to be significant in the upper tail and 𝑡𝑡2  to be 

significant in both tails, reflecting how Brazilian production expansion and biofuel policy 
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have affected the soybean price distributions.  

The estimates from a VAR model are also reported in Tables 2-3. Recall that the 

standard VAR model is obtained a special case of the QVAR model when all non-intercept 

parameters are the same across quantiles. We formally tested this hypothesis. We found strong 

statistical evidence against this null hypothesis for both 𝑝𝑓and 𝑝𝑠, with p-values less than 

0.01. Thus, there is strong evidence against the VAR model: non-intercept parameters in the 

QVAR model differ across quantiles. This illustrated in Tables 2-3 when the parameter 

estimates differ between the lower quantiles and the upper quantiles. An example is given by 

the nonlinear effects of 𝑝𝑓𝑖
𝑠  on 𝑝𝑓  in Table 2: the VAR model finds no statistically 

significant effect on 𝑝𝑓, but the QVAR reports statistically significant effects in the tails of 

the price distribution (at 𝑞 = 0.1 and 𝑞 = 0.9). The failure of VAR model to capture such 

effects indicates a need to go beyond mean regression analysis. Applied to all quantiles, our 

QVAR approach further models the whole distribution, allowing for a flexible representation 

of the marginal price distributions (including mean, variance, skewness and kurtosis) and their 

evolution over time. Appendix B presents additional results on the marginal distributions.  

5.2 Estimates of joint distribution 

Having estimated the marginal distributions, we proceed with evaluating the joint 

distribution. We start with evaluating the conditional distribution 𝐷(𝑞𝑓|𝑞𝑠, 𝑚𝑎) given in 

equation (12). The quantile estimates of 𝐷(𝑞𝑓|𝑞𝑠, 𝑚𝑎) are reported in Table 4 for selected 

quantiles. Relying on bootstrapping, we conducted formal tests on the parameters 𝜸(𝑞𝑓) in 

(12), documenting that the linear term 𝑞𝑠, the nonlinear term 𝑞𝑠
𝑠 as well as 𝑚𝑎 all have 
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statistically significant effects on the conditional distribution of 𝑞𝑓. In Table 4, the coefficient 

of 𝑞𝑠 varies between 0.871 and 0.897, indicating positive contemporaneous codependence 

between 𝑝𝑓 and 𝑝𝑠. The statistical significance of 𝑞𝑠 and 𝑞𝑠
𝑠 presents strong evidence of 

departure from independence. Finally, Table 4 reports that the coefficient of 𝑚𝑎 is positive 

and statistically significant, showing that 𝑚𝑎  affects the codependence (𝑝𝑓 , 𝑝𝑠) . 

Additional results on the codependence between 𝑝𝑓 and 𝑝𝑠 are presented in Appendix C.  

6. Economic implications 

This section shows how our approach provides useful insights into the relationships 

between the futures price and spot price. They include studying three sets of issues: dynamic 

stability, cointegration and convergence properties.  

6.1 Dynamics and (in)stability 

The price dynamics and stability have important implications for determining the 

effects of stochastic shocks on economic variables, and have been studied intensively in 

literature (e.g., Wang and Tomek, 2007). Recent work has studied the quantile-based unit root 

tests, though most of which apply in the univariate and linear contexts (Koenker and Xiao, 

2004). Our QVAR approach extends previous research by evaluating dynamics and 

(in)stability issues in a multivariate and nonlinear context. We rely on the roots associated 

with equation (10), with a special focus on the dominant root 𝜆1(⋅). As discussed above, 

ln (|𝜆1(⋅)|) measures the rate of local divergence along a forward path. In our case, 𝜆1(⋅) 

can vary across quantiles and across market conditions.   

Table 5 reports the modulus of the dominant root across quantiles and under different 



23 

maturities of soybean futures. First, when holding 𝑚𝑎 constant, we find that the dominant 

roots 𝜆1 tends to increase with 𝑞𝑓. Table 5 shows dynamic stability (with |𝜆1| < 1) in the 

lower quantiles of 𝑞𝑓, and dynamic instability (with |𝜆1| > 1) in the upper quantiles of 𝑞𝑓, 

which are consistent in all 𝑚𝑎 scenarios. This result has three implications. First, dynamic 

stability varies with the quantiles 𝑞𝑓  and with 𝑚𝑎 . Importantly, this finding requires 

nonlinear dynamics: it could not be obtained under a standard VAR model or any model 

exhibiting linear dynamics. Second, from Table 5, positive shocks in the futures markets 

(corresponding to the upper quantiles of 𝑞𝑓) are associated with increased instability. This is 

one of our important results: futures markets can contribute to increased price instability, 

although only in the upper tail of the futures price distribution. This result found in our QVAR 

model could not be obtained in any model restricted to mean-variance dynamics. Third, Table 

5 shows that dominant root |𝜆1| increases from being below 1 to being above 1 as 𝑚𝑎 

moves from “low” to “high”. This is another important result: the futures market can help 

stabilize the soybean markets under nearby futures contract maturity; but this stabilizing effect 

does not apply to futures contracts with distant contract maturity. Such findings likely reflect 

difficulties in obtaining reliable information about the distant future. The destabilizing effects 

of long-term futures contracts may reflect limitations of futures markets: such effects are 

factors that may help explain why long-term futures contracts do not exist.   

In the context of our nonlinear model, Table 5 documents the local properties of 

dynamic market stability. With |𝜆1| = 1 being the threshold between stability and instability, 

we used bootstrapping to test two null hypotheses: local stability 𝐻0: |𝜆1| = 1 𝑣𝑠.  𝐻1: |𝜆1| <
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1 ; and local instability 𝐻0: |𝜆1| = 1 𝑣𝑠.  𝐻1: |𝜆1| > 1 . The test results reported in Table 5 

indicate that a unit root, |𝜆1| = 1, is not rejected around the median of the price distributions, 

a result commonly obtained in the time series literature (e.g., Enders, 2010). But it shows 

empirical support for dynamic stability (|𝜆1| < 1) in the lower quantiles of 𝑞𝑓 and when 

𝑚𝑎 is low; and it finds statistical support for dynamic instability (|𝜆1| > 1) when 𝑞𝑓 = 0.9. 

Finally, Table 5 indicates that rejecting the null hypothesis of instability becomes less likely 

under any quantiles (𝑞𝑓 , 𝑞𝑠) when 𝑚𝑎 is high. These findings make it clear that market 

stability is a local property that varies with market conditions.   

Our quantile-based price dynamics results extend previous findings that typically rely 

on unit root tests applied to traditional VAR models, models exhibiting structural changes 

(e.g., Wang and Tomek, 2007) or models exhibiting mean-level nonlinear dynamics (e.g., 

Beckmann and Czudaj, 2014). It presents evidence that price dynamics vary with the nature 

of the shocks, stressing the need to distinguishing between upside shocks (e.g., due to 

tightened supply) versus downside shocks (e.g., due to reduced demand). Our finding that 

dynamic instability arise under a futures prices surge (when 𝑞𝑓 = 0.9) can be interpreted as 

evidence of “local bubbles” located in the upper tail of futures price distribution. Such a 

finding is consistent with previous evidence on commodity price bubbles (e.g., Etienne et al., 

2014). Yet, our quantile-based analysis goes beyond previous research by showing that such 

“local bubbles” depend on the nature of shocks and market conditions. 

6.2 Cointegration and price discovery 

Previous literature has explored the evaluation of long run cointegration relationships 
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between futures and spot prices (e.g., Wang and Ke, 2005; Hernandez and Torero, 2010), 

typically relying on linear cointegration. In this study, given the evidence of local unit root 

just discussed, we explore the existence of long-run relationships based on nonlinear quantile 

cointegration (Xiao, 2009). Relying on our nonlinear model and equations (11a)- (11b), we 

evaluate the nature of local cointegration that can vary across quantiles (𝑞𝑓 , 𝑞𝑠) and depends 

on the evaluation point 𝒛 (i.e., 𝑚𝑎  in our case). The quantile-based cointegration tests 

involve the rank of the matrix 𝜫(𝒒, 𝒛)  in (11b). We investigated whether 𝜫(𝒒, 𝒛)  has a 

reduced rank by testing (using bootstrapping) the null hypothesis that det (𝜫(𝒒, 𝒛)) = 0. We 

found strong statistical evidence that 𝜫(𝒒, 𝒛) has reduced rank across quantiles and across 

𝑚𝑎 , reflecting that 𝑝𝑓  and 𝑝𝑠  ethibit long-term cointegration relationships. hhe 

cointegration is represented by the right Eigenvector (𝑣1 , 𝑣2) of 𝜫(𝒒, 𝒛) associated with 

its largest Eigenvalue. In our case, as discussed in section 3, the cointegration is “local” as it 

depends on the evaluation point (𝒒, 𝒛). hable 6 reports the normalized cointegration vector 

(𝑣1 /𝑣2) , showing how the nature of long-term cointegration between 𝑝𝑓  and 𝑝𝑠  varies 

across selected scenarios.  

 Under the three 𝑚𝑎 scenarios considered, Table 6 shows that (𝑣1 /𝑣2)  tends to 

large and close to one in quantiles around the median, but (𝑣1 /𝑣2) becomes smaller in both 

the upper tails and the lower tails of the distributions. This indicates that futures-spot long 

term price relations (i.e., contango or backwardation) can vary in response to the types of 

shocks. This is consistent with the analysis of cointegration across quantiles presented in Xiao 

(2009) and Lee et al. (2011). But we go beyond their work by exploring how cointegration 
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also varies with other variables (𝑚𝑎 in our case). Table 6 shows that (𝑣1 /𝑣2) tends to be 

larger as 𝑚𝑎  increases. It provides additional evidence that cointegration relationships 

between 𝑝𝑓 and 𝑝𝑠 are nonlinear and complex: they vary depending on the nature of shocks 

(downside shocks versus upside shocks) and maturity characteristics of futures contracts.  

Next, the implications of our analysis for price dynamics and price discovery are 

explored using a Quantile Impulse Response Function (QIRF). This is done by conducting 

forward simulations of our estimated model over a period of 150 weeks (approximately three 

years). Our simulations involve three scenarios: S1/ a base case; S2/ a one-time 30 percent 

positive price shock to the futures price 𝑝𝑓; and S3/ a one-time 30 percent positive price 

shock to the spot price 𝑝𝑠. The simulations were conducted as follows: first, at the initial 

period 𝑡 = 𝑡0, draw a random number 𝑞𝑠 from a uniform distribution in the interval (0, 1), 

and compute the simulated spot prices 𝑝𝑠  evaluated at 𝑞𝑠  using our QVAR estimates; 

second, draw a random number 𝑞𝑟 from a uniform distribution in the interval (0, 1) and use 

the estimated conditional distribution function 𝐷𝑒(𝑞𝑓|𝑞𝑠,⋅)  to obtain 𝑞𝑓 = 𝐷𝑒(𝑞𝑟|𝑞𝑠,⋅) ; 

third, compute the simulated futures price 𝑝𝑓 evaluated at 𝑞𝑓 using our QVAR estimates; 

fourth, replicate the random draws and calculations for 500 times and then move to the next 

period 𝑡 = 𝑡 + 1 for 150 weeks. The simulated prices are then used to evaluate the QIRF 

comparing scenarios S2 and S3 with the base case S1.        

 Figure 2 reports the QIRF generated from the forward simulations. Figure 2(a) shows 

that a positive shock from the spot market tends to put upward pressure on the futures price, 

causing sizeable but transitory increases in 𝑝𝑓. In contrast, Figure 2(b) reports a different 
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impulse response to a positive shock in the futures price: while the shock also triggers an 

increase in the spot price, its impacts are found to be significantly larger and more persistent. 

It takes much longer for the soybean market to absorb a shock from the futures market than 

from the spot market. While these findings are qualitatively consistent using impulse 

responses under different quantiles (q∈(0.1, 0.5, 0.9)), our analysis documents quantitively 

different responses to shocks. Overall, our refined approach provides strong evidence that the 

futures market plays a leading role in price discovery in the US soybean market. 

6.3 Basis and convergence 

We further rely on our forward simulations to evaluate the patterns exhibited by the 

basis, 𝑝𝑓 − 𝑝𝑠. Our analysis proceeds with repeating the simulation exercises introduced 

above under alternative scenarios for 𝑚𝑎.10 Figure 3 reports the forward-path patterns of the 

basis under different quantiles and 𝑚𝑎 scenarios. Under the three 𝑚𝑎 scenarios considered, 

the results illustrate that the basis varies around zero in lower quantile (q=0.1), and gradually 

increase around the median (q=0.5) and in upper quantile (q=0.9). This is an important result. 

First, the case around the median (q=0.5) points to a normal situation where the expiring 

futures price is higher than the spot price, where 𝑝𝑓1𝑡 − 𝑝𝑠𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ > 0 as reflected in 

equation (4). The presence of a positive basis is consistent with market practice and is well-

documented in the theory of storage (e.g., Working, 1949; Telser, 1958; Fama and French, 

1987; Routledge et al., 2002). Second, the high-quantile case (q=0.9) shows that the basis can 

become relatively large, leading to “non-convergence” between futures price and spot price. 

This issue is discussed in more detail below.  
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Third, the low-quantile case unveils the possibility of having backwardation or 

“inverse-carrying charge”, corresponding to the situation where 𝑝𝑓1𝑡 − 𝑝𝑠𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ < 0 

(see equation (4) as discussed in section 2). Previous literature has relied on a “convenience 

yield” interpretation of this inverse-carrying charge as an explanation for why positive 

inventory would be held under declining prices (e.g., Working, 1949). In section 2, we provide 

an alternative interpretation from the perspective of risk: under risk aversion, 𝑅𝑘𝑡
′  can be 

negative and possibly lead to 𝑝𝑓1𝑡 − 𝑝𝑠𝑡 < 0 (from equation (4)). When comparing different 

𝑚𝑎 scenarios, Figure 3 shows that a negative basis can develop when 𝑚𝑎 is high. This is a 

case where the soybean futures-spot basis behavior is affected by the futures contract maturity 

properties. These results indicate that the behavior of the basis is situation-specific and exhibit 

time-varying patterns depending on market conditions.  

Finally, how does the basis change as nearly futures contracts approach maturity? To 

answer this question, we simulate the case where 𝑚𝑎 starts high and decreases over time 

toward zero. Figure 4 reports the simulated convergence patterns across quantiles and over 

time, exemplified for selected quantiles q∈(0.1, 0.5, 0.9) and selected years (1990, 2000 and 

2010). As nearby contracts get close to maturity, the basis exhibits similar changes across 

quantiles but varies significantly over time. Compared with the 1990s and 2000s, the basis 

became larger in the 2010s, implying that its convergence property deteriorated. This is 

consistent with the findings of recent research. For instance, Garcia et al. (2014) develop a 

dynamic commodity storage model to explain how the institutional structure of the delivery 

system caused convergence failures and trigged surging “price wedge” (the difference 



29 

between carrying storage price and maximum storage rate). As discussed in section 2, 

convergence properties depend on 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ , indicating that reducing transaction cost and 

improving information can contribute to reaching convergence. In this context, the Chicago 

Board of Trade has made several modifications to futures contracts that may have contributed 

to recent improvements in the functioning of the soybean futures market and its convergence 

performance (Hoffamn and Aulerich, 2013).   

7. Conclusion 

This paper presents a dynamic analysis of the distribution of commodity futures and 

spot prices, with an application to the US soybean market over the period of 1980-2019. We 

propose a two-step QVAR-Copula method to estimate the marginal and joint price 

distributions. In the first step, we specify and estimate a quantile vector autoregression 

(QVAR) model representing the marginal distributions of futures and spot prices. We find 

strong evidence of price dynamics, including the existence of nonlinear dynamics. We 

examine how the marginal distributions evolve over time and in response to changing market 

conditions, reflected by time-varying mean, variance, skewness and kurtosis. In the second 

step, we estimate a conditional distribution to recover the copula linking the marginal 

distribution to the joint price distribution. We show evidence of strong positive 

contemporaneous codependence between futures and spot prices at all evaluation points. We 

also evaluate how exogenous variables (including futures contract maturity) affect the 

dynamics and codependence of prices.  
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The application of our approach to the US soybean market provides an illustration of 

its flexibility and usefulness. Our analysis evaluates dynamic stability and finds evidence of 

local dynamic instability in the upper tail of the price distributions. We investigate the nature 

of cointegration capturing the long-term relationship between futures price and spot price; we 

find evidence of nonlinear cointegration as the long-term relationship varies with market 

conditions. We also report quantile-specific impulse response functions and find that shocks 

from futures market trigger larger and more persistent impacts on prices. This documents the 

importance of the futures market in soybean price discovery. Finally, we evaluate the basis 

and discuss its dynamic properties and the (non)convergence of the futures and spot price 

under different market conditions.                     

While our QVAR-Copula approach is broadly applicable to the analysis of price 

dynamics, it could be extended in several directions. First, our application was limited to the 

US soybean market. It would be useful to apply it to study the price behavior of other 

commodities and other markets (e.g., financial markets). Second, as our approach allows for 

a flexible assessment of price risk exposure, it could be used to evaluate risk management, 

including the economics of hedging, insurance and derivative markets. Third, our 

investigation has found nonlinearities in short term price adjustments and in long term 

cointegration. More research is needed to explore the implications of these nonlinearities for 

market dynamics. Fourth, our econometric analysis has uncovered evidence of local 

instability in the upper tail of the price distribution. At this point, the global implications of 

this local instability remain unclear. These seem to be good topics for future research.   
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Table 1. Summary statistics.  

Variables Mean St. Dev. Mat Min 

𝑝𝑓 1.994 0.325 2.863 1.418 

𝑝𝑓1 1.994 0.325 2.863 1.418 

𝑝𝑓2 1.994 0.325 2.863 1.418 

𝑝𝑓1
𝑠 0.113 0.162 0.910 0.000 

𝑝𝑓2
𝑠 0.113 0.162 0.910 0.000 

𝑝𝑠 1.938 0.332 2.862 1.330 

𝑝𝑠1 1.938 0.332 2.862 1.330 

𝑝𝑠2 1.937 0.332 2.862 1.330 

𝑝𝑠1
𝑠 0.116 0.168 0.993 0.000 

𝑝𝑠2
𝑠 0.116 0.168 0.993 0.000 

𝑚𝑎 3.499 2.496 9.000 0.000 

𝑚𝑎 ⋅ 𝑝𝑓1 6.975 5.165 23.911 0.000 

𝑡𝑡 2.000 1.154 3.998 0.004 

𝑡𝑡1 6.047 7.217 21.981 0.000 

𝑡𝑡2 2.809 4.492 14.981 0.000 

Note: hhe data involve weekly observations over the period 1980-2019.  
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Table 2. QVAR and VAR estimates: futures price equation 𝑝𝑓 

Variable VAR  
QVAR: 𝑝𝑓 equation 

q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 

Intercept 
0.033*** 0.066*** 0.049*** 0.017 0.003  -0.002  

(0.009) (0.019) (0.012) (0.010) (0.008) (0.013) 

𝑝𝑠1 
0.246*** 0.336** 0.226*** 0.139* 0.093 0.060 

(0.053) (0.151) (0.083) (0.082) (0.080) (0.098) 

𝑝𝑓1 
0.909*** 0.757*** 0.907*** 1.018*** 1.088*** 1.184*** 

(0.055) (0.161) (0.080) (0.077) (0.077) (0.099) 

𝑝𝑠2 
-0.248*** -0.250 -0.162** -0.155* -0.139* -0.120 

(0.053) (0.160) (0.082) (0.086) (0.076) (0.092) 

𝑝𝑓2 
0.078 0.112  0.000 -0.009  -0.036  -0.107 

(0.055) (0.175) (0.083) (0.080) (0.072) (0.098) 

𝑝𝑓1
s 

0.017 0.204*** 0.110*** -0.004 -0.071 -0.181** 

(0.034) (0.075) (0.041) (0.047) (0.049) (0.071) 

𝑝𝑓2
s 

-0.018 -0.201*** -0.111*** 0.004  0.063 0.158** 

(0.034) (0.071) (0.042) (0.049) (0.049) (0.072) 

𝑚𝑎 
-0.004*** -0.006* -0.005*** -0.003* -0.004** -0.005** 

(0.001) (0.003) (0.002) (0.002) (0.001) (0.002) 

𝑚𝑎 ⋅ 𝑝𝑓1 
0.002*** 0.003* 0.003*** 0.001  0.002** 0.002** 

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001) 

𝑄1𝑡 
0.000 0.002 0.001 0.000 0.000 -0.004** 

(0.002) (0.003) (0.001) (0.001) (0.002) (0.002) 

𝑄2𝑡 
0.000 -0.001 -0.002 -0.001 0.002  0.001 

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) 

𝑄3𝑡 
-0.007*** -0.019*** -0.008*** -0.007*** 0.000 0.006*** 

(0.002) (0.004) (0.002) (0.002) (0.003) (0.002) 

𝑡𝑡 
0.001 0.001 0.000 0.001 0.003** 0.000 

(0.002) (0.003) (0.002) (0.001) (0.002) (0.002) 

𝑡𝑡1 
0.001* 0.000 0.001  0.001* 0.002*** 0.002*** 

(0.000) (0.001) (0.001) (0.000) (0.000) (0.001) 

𝑡𝑡2 
-0.001 0.002* 0.000 -0.001** -0.002*** -0.005*** 

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

Goodness 

of fit 

Adjusted 𝑅2 Pseudo 𝑅2 

0.993 0.892 0.913 0.927 0.933 0.934 

Note: Lagged prices are denoted using subscript (e.g., 𝑝𝑠𝑗 = 𝑝𝑠𝑡−𝑗 , 𝑗 ∈ {1,2}). Standard errors (presented 

in parentheses) are obtained using bootstrapping, with statistical significance represented by stars: * = 

p<0.1; ** = p<0.05; *** = p<0.01. For the “goodness of fit”, we report the adjusted 𝑅2 for OLS estimates 

and the Pseudo-𝑅2 proposed by Koenker and Machado (1999) for quantile estimates. 

http://ajbuckeconbikesail.net/Econ616/Quantile/JASA1999.pdf
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Table.3  QVAR and VAR estimates: spot price equation 𝑝𝑠 

Variable VAR  
QVAR: 𝑝𝑠 equation 

q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 

Intercept 
0.013 0.053*** 0.024** 0.012  -0.008  -0.009  

(0.009) (-0.017) (0.011) (0.012) (0.010) (0.011) 

𝑝𝑠1 
1.148*** 1.316*** 1.221*** 1.144*** 1.093*** 0.968*** 

(0.055) (0.130) (0.093) (0.072) (0.077) (0.114) 

𝑝𝑓1 
0.009 -0.187  -0.108  0.014  0.095  0.217* 

(0.055) (0.126) (0.092) (0.068) (0.080) (0.117) 

𝑝𝑠2 
-0.275*** -0.302** -0.292*** -0.256*** -0.259*** -0.132  

(0.055) (0.138) (0.094) (0.073) (0.078) (0.115) 

𝑝𝑓2 
0.109** 0.133  0.159* 0.091  0.079  -0.035  

(0.055) (0.137) (0.094) (0.072) (0.080) (0.118) 

𝑝𝑠1
s 

0.067** 0.218*** 0.127*** 0.036 -0.016 -0.118** 

(0.033) (0.080) (0.045) (0.061) (0.042) (0.055) 

𝑝𝑠2
s 

-0.065** -0.212*** -0.123*** -0.030 0.015 0.099* 

(0.033) (0.081) (0.045) (0.062) (0.041) (0.056) 

𝑚𝑎 
-0.004*** -0.006** -0.005*** -0.004** -0.004*** -0.006*** 

(0.002) (0.002) (0.002) (0.002) (0.001) (0.002) 

𝑚𝑎 ⋅ 𝑝𝑓1 
0.002** 0.003** 0.002*** 0.002* 0.002** 0.003*** 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

𝑄1𝑡 
-0.001 -0.002  0.002  0.000 -0.002  -0.004** 

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) 

𝑄2𝑡 
0.000 -0.002  0.000 0.000 0.001 0.000 

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) 

𝑄3𝑡 
-0.008*** -0.023*** -0.011*** -0.009*** -0.003 0.004 

(0.002) (0.004) (0.002) (0.002) (0.002) (0.003) 

𝑡𝑡 
0.000 0.000 0.001 0.001 0.000 0.001 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

𝑡𝑡1 
0.000 -0.001  0.000 0.000 0.001* 0.002*** 

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

𝑡𝑡2 
-0.001 0.002** 0.001 -0.001 -0.002*** -0.005*** 

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

Goodness 

of fit 

Adjusted 𝑅2 Pseudo 𝑅2 

0.993 0.894 0.913 0.926 0.932 0.935 

Note: Lagged prices are denoted using subscript (e.g., 𝑝𝑠𝑗 = 𝑝𝑠𝑡−𝑗 , 𝑗 ∈ {1,2}) . Standard errors 

(presented in parentheses) are obtained using bootstrapping, with statistical significance represented by 

stars: * = p<0.1; ** = p<0.05; *** = p<0.01. For the “goodness of fit”, we report the adjusted 𝑅2 for 

OLS estimates and the Pseudo-𝑅2 proposed by Koenker and Machado (1999) for quantile estimates.  

 

  

http://ajbuckeconbikesail.net/Econ616/Quantile/JASA1999.pdf
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Table.4 .Quantile Estimation of the conditional distribution 𝐷(𝑞𝑓| 𝑞𝑠, 𝑚𝑎), selected quantiles 

 Variable 
estimates 

𝑞𝑓  =  0.1 𝑞𝑓  =  0.3 𝑞𝑓  =  0.5 𝑞𝑓  =  0.7 𝑞𝑓  =  0.9 

Cons 
-0.109*** -0.022** 0.039*** 0.102*** 0.241*** 

(0.010) (0.010) (0.010) (0.011) (0.019) 

𝑞𝑠 
0.871*** 0.891*** 0.896*** 0.897*** 0.857*** 

(0.009) (0.007) (0.006) (0.007) (0.010) 

𝑞𝑠
𝑠 

0.576*** 0.208*** 0.017 -0.161*** -0.638*** 

(0.064) (0.044) (0.043) (0.044) (0.078) 

𝑚𝑎 
0.002* 0.003*** 0.003*** 0.004*** 0.004*** 

(0.001) (0.001) (0.001) (0.001) (0.001) 

Note: 𝑞𝑠
𝑠 is defined as 𝑞𝑠

𝑠 = (𝑞𝑠 − 0.5)2. Standard errors (in parentheses) are obtained using empirical 

bootstrapping applied over both steps of the two-step estimation approach, with statistical significance 

represented by stars: * = p<0.1; ** = p<0.05; *** = p<0.01.  
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Table.5 .Modulus of the dominant roots 𝜆1 under alternative scenarios  

𝑚𝑎_low 

 𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 
0.963 0.970 1.042 1.082* 1.128* 

(0.034)  (0.037)  (0.055)  (0.066)  (0.078)  

q=0.3 
0.973** 0.976**

* 

1.004 1.030 1.058 

(0.017)  (0.012)  (0.021)  (0.034)  (0.049)  

q=0.5 
0.976* 0.979** 0.994 1.006 1.012 

(0.016)  (0.013)  (0.012)  (0.016)  (0.027)  

q=0.7 
0.975* 0.980** 0.993 1.000 0.992* 

(0.017)  (0.011)  (0.013)  (0.009)  (0.018)  

q=0.9 
0.974** 0.979**

* 

0.995 1.003 0.997* 

(0.016)  (0.010)  (0.013)  (0.011)  (0.015)  

𝑚𝑎_medium 

 𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 
0.971 0.974 1.044 1.083* 1.128* 

(0.030)  (0.033)  (0.052)  (0.064)  (0.077)  

q=0.3 
0.978* 0.982** 1.009 1.033 1.060 

(0.015)  (0.010)  (0.019)  (0.032)  (0.047)  

q=0.5 
0.979 0.982* 0.997 1.008 1.012 

(0.015)  (0.012)  (0.011)  (0.015)  (0.026)  

q=0.7 
0.979* 0.983** 0.996 1.003 0.994* 

(0.016)  (0.011)  (0.012)  (0.008)  (0.018)  

q=0.9 
0.979* 0.985** 1.000 1.008 1.002 

(0.016)  (0.010)  (0.013)  (0.011)  (0.012)  

𝑚𝑎_high 

 𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 
0.980 0.984 1.047 1.085* 1.128* 

(0.028)  (0.030)  (0.050)  (0.062)  (0.076)  

q=0.3 
0.986 0.990 1.015 1.039 1.064 

(0.013)  (0.009)  (0.017)  (0.030)  (0.044)  

q=0.5 
0.984 0.987 1.001 1.010 1.014 

(0.016)  (0.013)  (0.010)  (0.015)  (0.025)  

q=0.7 
0.983 0.988 1.000 1.007 0.998 

(0.017)  (0.011)  (0.012)  (0.009)  (0.018)  

q=0.9 
0.987 0.993 1.008 1.015 1.009 

(0.017)  (0.012)  (0.014)  (0.014)  (0.012)  

Note: hhe results are presented under three ma scenarios: low, medium and high, corresponding to 𝑚𝑎 

being set at the 0.1, 0.5 and 0.9 sample quantiles, respectively. We use bootstrapping to test two null 

hypotheses: local stability 𝐻0: |𝜆1| = 1 𝑣𝑠.  𝐻1: |𝜆1| < 1 ; and local instability 𝐻0: |𝜆1| =
1 𝑣𝑠.  𝐻1: |𝜆1| > 1 . oootstrapped standard errors are presented in parentheses, with statistical 

significance represented by stars: * = p<0.1; ** = p<0.05; *** = p<0.01.  
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Table.6 .Normalized cointegration vectors (𝑣1/𝑣2) under alternative scenarios 

 𝑚𝑎_low 

  𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 0.590  0.591  0.267  0.561  0.563  

q=0.3 0.777  0.915  1.437  1.132  0.907  

q=0.5 0.841  0.941  1.102  1.038  0.938  

q=0.7 0.848  0.900  0.954  0.938  0.898  

q=0.9 0.773  0.810  0.841  0.835  0.806  

 𝑚𝑎_medium 

   𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 0.645  0.664  0.342  0.594  0.564  

q=0.3 0.814  0.944  1.255  1.021  0.833  

q=0.5 0.862  0.948  1.048  0.983  0.886  

q=0.7 0.853  0.895  0.926  0.907  0.865  

q=0.9 0.770  0.796  0.806  0.798  0.770  

 𝑚𝑎_high 

 𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.3 q=0.5 q=0.7 q=0.9 

q=0.1 0.732  0.789  0.468  0.615  0.553  

q=0.3 0.858  0.968  1.073  0.902  0.752  

q=0.5 0.885  0.951  0.982  0.917  0.825  

q=0.7 0.857  0.886  0.890  0.867  0.824  

q=0.9 0.763  0.775  0.764  0.755  0.726  

Note: hhe cointegration vector (𝑣1, 𝑣2) is the right Eigenvector of the matrit 𝜫(𝒒, 𝒛) associated 

with its largest Eigenvalue, where 𝜫(𝒒, 𝒛) is given in equation (11b).  
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Figure.1  hrajectories of soybean spot prices log(𝑝𝑠) and futures prices log(𝑝𝑓), 1980-2019 

 

 

 

Figure.2 .Quantile impulse responses  

   

Note: In our notation, “IR_pspf, q=0.5” denotes the impulse response of a one-time 30 percent change 

in 𝑝𝑠 on the forward path of 𝑝𝑓, evaluated at 0.5 quantile.  
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Figure.3 .Forward-path patterns of basis under alternative scenarios 

 

Note: hhe three 𝑚𝑎 scenarios (low, medium and high) correspond to 𝑚𝑎 being set at the 0.1, 0.5 and 0.9 sample quantiles, respectively. 
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Figure.4 .Forward-path patterns of non-convergence under alternative scenarios 

 

Note: hhese simulated paths correspond to scenarios where 𝑚𝑎 is set to decrease over time toward zero.  
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Appendix.A 

Consider the case where the 𝑘-th agent intends to buy a quantity 𝑄𝑘𝑡 at price 𝑝𝑎𝑡 

at time 𝑡 and to sell it at price 𝑝𝑏,𝑡+𝜏 at time (𝑡 + 𝜏), 𝜏 > 0. In situations where 𝑄𝑘𝑡 < 0, 

this would correspond to the 𝑘-th agent selling |𝑄𝑘𝑡| at price 𝑝𝑎𝑡 at time 𝑡 and buying 

it at price 𝑝𝑏,𝑡+𝜏  at time (𝑡 + 𝜏) . Alternative interpretations of 𝑄𝑘𝑡  and of prices 

(𝑝𝑎𝑡, 𝑝𝑏,𝑡+𝜏) are discussed in the text. Denote by 𝐶𝑘(|𝑄𝑘𝑡|) the transaction cost of 𝑄𝑘𝑡. 

The associated present value of profit is 𝜋𝑘𝑡 = (𝑟𝜏 𝑝𝑏,𝑡+𝑘 − 𝑝𝑎𝑡) 𝑄𝑘𝑡  − 𝐶𝑘(|𝑄𝑘𝑡|), where 

𝑟 ∈ (0, 1) is a discount factor. The price 𝑝𝑏,𝑡+𝜏 being uncertain at time 𝑡, the 𝑘-th agent 

formulates expectation about price 𝑝𝑏,𝑡+𝜏 based on available information. Assume that the 

𝑘-th agent maximizes the expected utility of profit 𝜋𝑘𝑡: 𝐸𝑘𝑡𝑈𝑘[(𝑟𝜏 𝑝𝑏,𝑡+𝜏 − 𝑝𝑎𝑡] 𝑄𝑘𝑡  −

𝐶𝑘(|𝑄𝑘𝑡|)], where 𝐸𝑘𝑡 is the expectation operator based on the information available to 

the 𝑘 -th agent at time 𝑡  and 𝑈𝑘(𝜋𝑘𝑡)  is a utility function representing the risk 

preferences of the 𝑘-th agent. We assume that 
𝜕𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
> 0 and 

𝜕2𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
2 ≤ 0, where 

𝜕2𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
2 < 0 under risk aversion. When 𝑄𝑘𝑡 ≠ 0 and under differentiability, the optimal 

decision is given by the first-order condition 

 𝐸𝑘𝑡[𝑈𝑘𝑡
′ ⋅ (𝑟𝜏 𝑝𝑏,𝑡+𝜏 − 𝑝𝑎𝑡 − 𝐶𝑘

′ )], 

or  

𝑟𝜏 𝐸𝑘𝑡(𝑝𝑏,𝑡+𝜏) − 𝑝𝑎𝑡 = 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ ,  (A1) 

where 𝑈𝑘𝑡
′ =

𝜕𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
, 𝐶𝑘𝑡

′ =
𝜕𝐶𝑘(|𝑄𝑘𝑡|)

𝜕|𝑄𝑘𝑡|
 is the marginal cost of 𝑄𝑘𝑡  and 𝑅𝑘𝑡

′ =

−𝑟𝜏 𝐶𝑜𝑣(𝑈𝑘𝑡
′ , 𝑝𝑏,𝑡+𝜏)/𝐸𝑘𝑡(𝑈𝑘𝑡

′ ) is the marginal risk premium. Equation (A1) states an 

intertemporal arbitrage condition between the price 𝑝𝑎𝑡  and 𝑝𝑏,𝑡+𝜏 : the expected 
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discounted price difference [𝑟𝑘 𝐸𝑘𝑡(𝑝𝑏,𝑡+𝜏) − 𝑝𝑎𝑡] is equal to the marginal cost plus the 

marginal risk premium: 𝐶𝑘𝑡
′ + 𝑅𝑘𝑡

′ . As discussed in the text, the interpretation of equation 

(A1) varies depending on what 𝑄𝑘𝑡 is and on what the prices (𝑝𝑎𝑡, 𝑝𝑏,𝑡+𝜏) represent.  

As just noted, we interpret the term 𝑅𝑘𝑡
′ = −𝑟𝜏 𝐶𝑜𝑣(𝑈𝑘𝑡

′ , 𝑝𝑏,𝑡+𝜏)/𝐸𝑘𝑡(𝑈𝑘𝑡
′ ) as a 

marginal risk premium. Indeed, under risk neutrality, the utility function 𝑈𝑘(𝜋𝑘𝑡) is linear, 

implying that 𝐶𝑜𝑣(𝑈𝑘𝑡
′ , 𝑝𝑏,𝑡+𝜏) = 0 (as 𝑈𝑘𝑡

′  is a constant) and 𝑅𝑘𝑡
′ = 0. This raises the 

question: What is the sign of 𝑅𝑘𝑡
′  under risk aversion? In this case, 𝑈𝑘(𝜋𝑘𝑡) is strictly 

concave in 𝜋𝑘𝑡 and 
𝜕2𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
2 < 0. Allowing the quantity 𝑄𝑘𝑡 to be positive for a sale at 

time (𝑡 + 𝜏) but negative for a purchase at time (𝑡 + 𝜏), we have the following result.   

Lemma 1: Under risk and risk aversion, the marginal risk premium satisfies  

𝑅𝑘𝑡
′  [

>
=
<

]  0 when 𝑄𝑘𝑡  [
>
=
<

]  0.  (A2) 

Proof: By definition, given 𝑈𝑘𝑡
′ > 0, 𝑅𝑘𝑡

′  is of the sign of [− 𝐶𝑜𝑣(𝑈𝑘𝑡
′ , 𝑝𝑏𝑡+𝜏)]. When 

𝑝𝑏,𝑡+𝜏 has a non-degenerate distribution, we have  

 𝑠𝑖𝑔𝑛{−𝐶𝑜𝑣(𝑈𝑘𝑡
′ , 𝑝𝑏,𝑡+𝜏)} = 𝑠𝑖𝑔𝑛 {−

𝜕𝑈𝑘𝑡
′

𝜕𝑝𝑏,𝑡+𝜏
} = 𝑠𝑖𝑔𝑛 {−

𝜕2𝑈𝑘(𝜋𝑘𝑡)

𝜕𝜋𝑘𝑡
2  𝑟𝜏 𝑄𝑘𝑡}, 

which gives (A2).  

 Q.E.D. 

Lemma 1 states that, under risk and risk aversion, the marginal risk premium 𝑅𝑘
′  

is positive when 𝑄𝑘𝑡 > 0, i.e. when the 𝑘-th agent sells the quantity 𝑄𝑘𝑡 at price 𝑝𝑏,𝑡+𝜏. 

Alternatively, it states that the marginal risk premium 𝑅𝑘
′  is negative when 𝑄𝑘𝑡 < 0, i.e. 

when the 𝑘-th agent buys the quantity |𝑄𝑘𝑡| at price 𝑝𝑏,𝑡+𝜏 . The case where 𝑅𝑘
′ > 0 
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when 𝑄𝑘𝑡 > 0 is a well-known result in the economic literature (e.g., Sandmo, 1971): risk 

aversion implies a positive marginal risk premium which provides a disincentive to sell at 

time (𝑡 + 𝜏) in the presence of price risk. As noted by Finkelshtain and Chalfant (1991), 

Lemma 1 also shows an opposite result when 𝑄𝑘𝑡 < 0 : risk aversion then implies a 

negative marginal risk premium which provides an extra incentive to buy at time (𝑡 + 𝜏) 

in the presence of price risk. This result is important for two reasons. First, it makes it clear 

that, under risk and risk aversion, market position matters: risk affects buyers and sellers 

differently. Second, by showing that 𝑅𝑘
′  can change sign, equation (A2) implies that the 

marginal risk premium cannot be treated as a constant.  

 

Appendix.B 

Going beyond the estimates reported in Tables 2-3, we re-estimate the QVAR 

model reported for all quantiles, generating estimates of the quantile functions and their 

inverse: the distribution functions (Huang et al., 2020; Ramsey, 2020). The estimated 

distribution functions of 𝑝𝑓 and 𝑝𝑠 are shown in Figure B1 for selected years: 1990, 

2000 and 2010 (evaluated at the first week of each year). Figure B1 documents several 

interesting results. First, the estimated distributions are smooth, indicating the quantile 

estimates based on our specification and data are flexible in modeling the underlying price 

distributions. Second, Figure B1 shows that the price levels and shapes of the price 

distribution change over time. For instance, compared with the 1990s and 2000s, the shapes 

of price distributions in the 2010s exhibit longer tails for both futures and spot price, which 
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is consistent with increasing market volatility associated with the world food crisis over 

the period of 2007-2014 (Chavas et al., 2014). These findings illustrate the flexibility and 

usefulness of our QVAR approach in capturing the changing nature of the price 

distributions.  

After estimating the marginal price distributions of 𝑝𝑓 and 𝑝𝑠, we proceed to 

evaluate its evolution over time. Using equations (8a)-(8b), we define the relative quantiles 

𝑝𝑖𝑞(𝑞𝑖| ⋅)/𝑝𝑖𝑞(0.5| ⋅), 𝑞𝑖 ∈ (0, 1), 𝑖 ∈ {𝑓, 𝑠}  as measures of the relative range of prices 

obtained under evolving market conditions. hhe results are presented in Figure o2 for 

selected quantiles. Figure o2 shows how the relative quantiles for futures and spot prices 

have evolved over time, reporting a widening and asymmetric range during the 2008 world 

food crisis. Again, going beyond standard regression analysis, this illustrates how our 

QVAR approach can capture complet price responses to market shocks.   

Next, based on the estimated distributions, we calculate the moments (mean, 

standard deviation, skewness and kurtosis) of estimated price distributions over the sample 

period. The results are reported in Figure B3. The trajectories of mean prices are very 

similar to actual prices, reflecting that our QVAR model provides a good fit to the data. 

The standard deviations capture the evolving price fluctuations in soybean futures and spot 

markets (e.g., booms and busts during the 2008 world food crisis). Interestingly, we 

observe deviations from log-normal distributions: Figure B3 shows the existence of non-

zero skewness and excessive kurtosis (i.e., when skewness is non-zero and kurtosis is 

greater than three), which is consistent with findings in recent work (Huang et al., 2020).   
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Figure.B1 .Selected futures and spot price distributions in the year of 1990, 2000 and 2010 (evaluated 

at the first week of each year) 

 

Figure.B2  Evolution of relative quantiles (relative to the median).of simulated distributions 

        

Figure.B3  Moments of estimated futures and spot price distributions over time 
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Appendix.C 

Using the estimate 𝐷𝑒(𝑞𝑓|𝑞𝑠, 𝑚𝑎) , we further estimate the copula 

𝐶𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) ≡ ∫ 𝐷𝑒(𝑞𝑓| 𝑞, 𝑚𝑎)
𝑞𝑠

0
𝑑𝑞  and the associated codependence measure 

𝑅𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) ≡ 𝐶𝑒(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) − 𝑞𝑓 ⋅  𝑞𝑠 given in equation (13). As discussed in the 

text, 𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) {
>
=
<

}  0  under {

positive dependence
independence

negative dependence 
}  between 𝑝𝑓  𝑎𝑛𝑑 𝑝𝑠 

evaluated at point ( 𝑞𝑓 , 𝑞𝑠, 𝑚𝑎) . Table C1 reports the estimates of codependence 

𝑅(𝑞𝑓 , 𝑞𝑠| 𝑚𝑎) for selected quantiles (𝑞𝑓 , 𝑞𝑠), evaluated at the sample median for 𝑚𝑎. It 

shows that the codependence between 𝑝𝑠 and 𝑝𝑓 is positive for all quantiles, reflecting 

close contemporaneous relationships between the futures price and the spot price. 

Interestingly, the codependence remains positive in the tails; but it is stronger in the upper 

tail than in the lower tail: 𝑅𝑒(0.9,0.9| ⋅) = 0.079 > 0.067 = 𝑅𝑒(0.1,0.1| ⋅) . Our 

estimates of tail codependence are consistent with previous research using copula to 

document the role of tail dependence in understanding cross-market pricing patterns, i.e., 

the parametric evidence presented in Patton (2006) and Reboredo (2012). As noted, our 

semi-parametric approach has two attractive features: 1/ it is flexible and allows for 

arbitrary co-dependence; and 2/ it does not require imposing a priori restrictions on the 

shape of the copula. The results presented in Table C1 is a nice illustration of the usefulness 

of our approach.  
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Table.C1 .Contemporaneous codependence 𝑅(𝑞𝑓, 𝑞𝑠| 𝑚𝑎) between 𝑝𝑓 and 𝑝𝑠, selected quantiles 

      𝑞𝑓 

𝑞𝑠 
q=0.1 q=0.2 q=0.3 q=0.4 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9 

q=0.1 0.067  0.075  0.069  0.060  0.050  0.041  0.031  0.021  0.011  

q=0.2 0.072  0.129  0.133  0.118  0.100  0.081  0.062  0.042  0.022  

q=0.3 0.064  0.132  0.175  0.171  0.148  0.121  0.093  0.063  0.033  

q=0.4 0.054  0.117  0.172  0.203  0.190  0.159  0.123  0.084  0.044  

q=0.5 0.044  0.098  0.148  0.192  0.212  0.191  0.151  0.105  0.055  

q=0.6 0.035  0.078  0.120  0.159  0.191  0.203  0.175  0.124  0.066  

q=0.7 0.024  0.059  0.091  0.121  0.148  0.172  0.179  0.139  0.077  

q=0.8 0.014  0.038  0.061  0.082  0.101  0.118  0.136  0.137  0.086  

q=0.9 0.004  0.018  0.031  0.042  0.052  0.061  0.071  0.080  0.079  

Note: hhe codependence is evaluated at the sample median for 𝑚𝑎. hhe results are very similar 

evaluated at the lower and higher quantiles for 𝑚𝑎. 
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Footnotes 

 

1 Garcia and Leuthold (2004) provides a good review of these related issues in the 

commodity futures market.  

2 As far as the authors are aware of, the closest-related research to ours include Huang et 

al., (2020) and Beckmann and Czudaj (2014). The former provides valuable insights on 

commodity price forecasting relying on quantile autoregression (QAR) in a univariate 

and linear manner, and the latter sheds light on the nonlinear dynamics in commodity 

prices using smooth-switching models. Our study extends their analysis in at least three 

ways as discussed above.  

3 To simplify the notation, we include the futures contract maturity 𝑚𝑎 among the 

explanatory variables 𝒙𝑡.  

4 Many market participants may specialize in specific activities. For example, producers 

may specialize in producing for the spot market (with 𝑄𝑠𝑘𝑡 > 0) while consumers 

specialize in consuming in the spot market (with 𝑄𝑠𝑘𝑡 < 0). Agents carrying stocks may 

specialize in intertemporal arbitrage activities in the spot market, trying to buy when the 

spot price is low (with 𝑄𝑠𝑘𝑡 < 0) and sell when the spot price is high (with 𝑄𝑠𝑘𝑡 > 0). 

Similarly, some speculators may specialize in intertemporal arbitrage activities in the 

futures market, trying to buy when the futures price is low (with 𝑄𝑓𝑘𝑚𝑡 < 0) and sell 

when the futures price is high (with 𝑄𝑓𝑘𝑚𝑡 > 0). Other market participants can get 

involved in both the spot market and the futures market. They include hedgers that take 

opposite positions in the spot market and the futures markets to reduce their exposure to 

price risk. And some speculators may speculate on the price difference (𝑝𝑓 − 𝑝𝑠), trying 

to modify their market positions to benefit from anticipated changes in (𝑝𝑓 − 𝑝𝑠). 

5 Throughout the paper, we define the basis as (𝑝𝑓1𝑡 − 𝑝𝑠𝑡). The reader should keep this 

in mind (as the basis is sometimes defined in the literature as (𝑝𝑠𝑡 − 𝑝𝑓1𝑡), i.e. of 

opposite sign).  
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6 In our empirical analysis, we also considered alternative specifications to (12), 

including past prices 𝑷𝒕−𝟏 and their interactions with 𝑚𝑎. We found that these 

additional variables did not have statistically significant effects. The corresponding 

estimates are available from the authors upon request.  

7 Following conventions (e.g., Beckmann and Czudaj, 2014), we performed robustness 

checks by trying other rolling method to construct the continuous futures prices (e.g., roll 

nearby contracts at the end of the month prior to contract expiration). The main findings 

are found to remain unchanged.  

8 We also explored other interaction terms but found them to be not statistically 

significant.  

9 We performed sensitivity tests and found our qualitative results to be robust to minor 

changes in the definitions of the time trends.  

10 Specifically, we consider three 𝑚𝑎 scenarios: low, medium and high, corresponding 

to 𝑚𝑎 being set at the 0.1, 0.5 and 0.9 sample quantiles, respectively. First, we hold 𝑚𝑎 

constant as “low” and use 500 random replications to simulate the forward path of 𝑝𝑓 

and 𝑝𝑠 for 150 periods. Second, we obtain the simulated distribution of the basis 𝑝𝑓 −

𝑝𝑠 from the 500 replications, and evaluate the scenarios corresponding to 0.1, 0.5 and 

0.9 quantile of the basis distribution. Third, we allow 𝑚𝑎 to change to “medium” and 

“high” and repeat the simulation process. hhe results are reported in Figure 3.  


