
Climate Shocks, Cyclones, and Economic Growth:

Bridging the Micro-Macro Gap

Laura Bakkensen
University of Arizona

Lint Barrage
UCSB & NBER

∗

This Version: November 2019

Abstract

Empirical analyses of climatic event impacts on growth, while critical for policy, have
been slow to be incorporated into macroeconomic climate-economy models. This paper pro-
poses a joint empirical-structural approach to bridge this gap for tropical cyclones. First,
we review competing empirical approaches in a harmonized global dataset and through a
theory lens. Second, we estimate cyclone impacts on structural determinants of growth
(productivity, depreciation, fatalities) to quantify a stochastic growth model for 40 vulner-
able countries and project welfare effects of climate-driven cyclone risk changes. Third, we
compute cyclone impacts on the social cost of carbon in the seminal DICE model.
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1 Introduction

What are the macroeconomic consequences of climate change? Over the past decade, a rapidly

growing body of empirical work has documented large potential growth impacts of weather

shocks. While many of these studies seek to enhance our understanding of the social costs of cli-

mate change, their findings have often been slow to be incorporated into macroeconomic climate-

economy models, as has been the case for other impact areas (Greenstone, 2016; Auffhammer,

2018). One general issue is that new empirical studies are often based on weather variation,

whereas climate-economy models feature damages as a function of the climate, i.e., the long-

run average of weather. Frontier work continues to develop econometric techniques to harness

the identifying power of weather variation whilst accounting for adaptation to long-run climate

change in areas such as energy demand, mortality, and agriculture (see, e.g., Deryugina and

Hsiang, 2017; Auffhammer, 2018; Lemoine, 2019). However, for macroeconomic or general equi-

librium impacts, there are fundamental additional challenges that must be overcome in maping

reduced-form evidence into structural models. Given that policymakers use climate-economy

models to quantify the social cost of carbon emissions (Greenstone, Kopits, and Wolverton,

2013), and given that growth impacts may add significantly to these costs (e.g., Moore and Diaz,

2015), this "micro-macro" gap also represents a critical policy concern (Obama, 2017).

This paper analyzes the causes of this gap and proposes a novel joint empirical-structural

approach to overcome it in the context of tropical cyclones (i.e., hurricanes, typhoons). Cyclones

are the leading cause of natural disaster damages world-wide1 and losses are projected to increase

with global changes (e.g,. Nordhaus, 2010b; Mendelsohn et al., 2012; Ranson et al., 2014),

making them a climate risk of special academic and policy interest. However, empirical estimates

of cyclone impacts on economic growth have again been slow to be incorporated into climate-

economy models.2 One of the first challenges facing interested modelers is that the empirical

literature has found a wide range of results, ranging from positive impacts of cyclones on growth

(e.g., Skidmore and Toya, 2002, "ST") to mixed impacts (e.g., Noy, 2009) and very large negative

effects (e.g., Hsiang and Jina, 2014, "HJ").

First, we thus present an empirical and conceptual review of competing approaches to quan-

tifying cyclone impacts on growth. We assemble a modern global dataset encompassing the full

history of cyclones around the globe from 1970-2015 in order to revisit some of these prior results

in a harmonized sample. For example, re-estimating both a cross-sectional specification à la ST

1 Comparing overall natural event losses worldwide (1998-2008) from cyclones to earthquakes/tsunamis, con-
vective storms, winter storms, floods, and heatwaves/fires in MunichRe’s NatCatService database.

2 Narita, Tol, and Anthoff (2009) use the FUND climate-economy model to project direct cyclone damage
impacts on the SCC, but not growth impacts. Fried (2019) develops a general equilibrium model of weather
disasters and the U.S. economy using an original quantification. We discuss these studies below.
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and a standard panel specification in the spirit of HJ, we find that the qualitative difference in

results remains. We then argue that this difference can be resolved through the lens of macroeco-

nomic theory. Cross-sectional regressions capture the effect of cyclone risk on average growth,

which is theoretically ambiguous in several types of growth models through, e.g., precaution-

ary savings effects. Panel fixed-effects models, on the other hand, isolate the effects of cyclone

strikes, which should decrease contemporaneous growth through the destruction of productive

assets. Importantly, theory also tells us that neither reduced-form approach may be individually

suffi cient to characterize the welfare effects of future changes as, for example, cyclone risk can

affect economic growth and welfare in opposite ways.

Second, we propose and implement a novel approach to estimating and modeling cyclone im-

pacts designed to combine empirical evidence with the structure of a model to deliver welfare cost

estimates and policy implications. On the empirical side, we first quantify cyclone impacts on the

structural determinants of growth, rather than on growth itself, which is typically endogenous in

macroeconomic climate-economy models. Specifically, we estimate cyclone strike impacts on to-

tal factor productivity (TFP), capital depreciation, and fatalities within our global panel. On the

modeling side, we present a stochastic endogenous growth cyclone-climate-economy model de-

signed to incorporate both these estimated damage functions and the broader empirical evidence

on cyclones and growth. Structurally, the model builds closely on Krebs (2003ab, 2006; see also

Krebs et al., 2015) who studies the implications of business cycle and idiosyncratic human capital

risks for household investment, growth, and welfare. One key feature of the model in our setting

is that it makes an explicit distinction between climate and weather : households face repeated

risks to their physical and human capital from cyclone strikes (weather), whose probability distri-

bution is determined by the climate. This setup enables us to directly calibrate cyclone impacts

to the plausibly causally identified estimates from panel (weather) regressions. In addition, the

model structure enables us to account for some long-run general equilibrium responses to climate

change that panel regressions may not be able to capture, as households respond to changing

cyclone risks (climate) by adapting their savings and asset allocation decisions.

We then quantify our cyclone-climate-economy model separately for each of 40 cyclone-

vulnerable nations using a combination of data, estimation, matching of moments, and external

calibration. The calibration includes country-specific probability density estimates of current

and future cyclone risks which we compute based on 68,000 synthetic storm track simulations

from Emanuel et al. (2008) and grounded in historical best track cyclone data. Comparing

steady-state outcomes under the current and future climate, we find significant heterogeneity

of projected effects, ranging from substantial negative impacts in vulnerable small island states

(e.g., a -5% welfare change in St. Vincent and the Grenadines), to small welfare gains in countries

where cyclone risks are predicted to decline with global warming (e.g., Australia). The United
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States stands out among the most negatively impacted countries, which are otherwise mostly

poor and small island states. This result is informed by prior empirical work identifying the

United States as an outlier in cyclone vulnerability conditional on its income levels and exposure

(e.g., Bakkensen and Mendelsohn, 2016), and highlights the importance of work investigating

the determinants of adaptation to storms in the United States (e.g., Fried, 2019).

Third, in order to assess the global climate policy implications of changing cyclone risks and

to illustrate the broader applicability of our approach, we integrate our cyclone impact estimates

into the seminal DICE climate-economy model (Nordhaus, e.g., 1992, 2010a). As damages in

DICE are a function of the global climate, we compute expected global aggregate impacts to

TFP, capital depreciation, and human capital losses resulting from cyclone risk changes, and add

dedicated damage functions for each component into DICE. The results suggest only a modest

increase in the optimal global carbon price. That is, while some countries may suffer enormous

losses from future cyclone risk increases, others are projected to experience risk declines, so that

the aggregate addition to global climate damages appears modest in our setting. Of course, as

further climatological projections and empirical estimates become available, it will be a rich area

for future work to expand upon these quantifications and conclusions.

These findings have important research and policy implications. First, our results recontex-

tualize empirical and theoretical understandings of the reduced-form literature on cyclones and

growth. That qualitatively different results from prior studies survive in a consistent sample

suggests that data improvements such as satellite-based storm measures are not suffi cient to

account for the difference in results.3 Instead, from a theoretical perspective, we argue that

different empirical specifications capture different elements of the overall impact of cyclones on

growth. By themselves, output growth regressions appear insuffi cient to characterize the welfare

consequences of cyclone risk changes and to quantify standard macroeconomic climate-economy

models, although they can provide critical insights to guide, e.g., model structure.

These findings also relate to an important parallel literature on temperature shocks and eco-

nomic growth. Several influential empirical studies have documented negative economic growth

impacts due to temperature shocks (e.g., Bansal and Ochoa, 2011; Dell, Jones, and Olken, 2012,

"DJO"; Burke, Hsiang, and Miguel, 2015; Colacito, Hoffman, Phan, 2018, etc.). There have been

efforts to incorporate these findings into climate-economic models. One pioneering analysis by

Moore and Diaz (2015) incorporates DJO’s estimates into DICE, demonstrating the potential of

growth impacts to significantly increase optimal climate policy stringency. As output growth im-

pact estimates do not provide a clear mapping into models such as DICE, Moore and Diaz (2015)

consider multiple pathways, calibrating either TFP growth or capital depreciation to match DJO

3 We do also highlight some differences in results that arise due to data variation across studies, such as sample
restrictions based on macroeconomic control variable availability.
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estimates.4 A similar issue arises in Fankhauser and Tol (2005) and Dietz and Stern (2015), who

extend DICE to an endogenous long-run growth framework with capital- or investment-based

knowledge spillovers, inter alia. Absent empirical guidance, they also consider a capital depreci-

ation specification and a TFP depreciation specification. Notably, the optimal carbon price in

2015 is 55% higher with the TFP specification, again highlighting the importance of impact chan-

nels. In order to overcome these ambiguities, we propose a joint empirical-structural approach

that first estimates cyclone impacts on the determinants of growth relevant for each model (e.g,.

TFP, capital depreciation, fatalities).5 ,6

Second, our approach thus highlights opportunities to reduce the "micro-macro" gap between

growing empirical evidence on macroeconomic impacts and the quantification climate-economy

models. On the one hand, we show that only minor extensions of existing empirical approaches

yield structurally interpretable impact estimates, such as using growth decompositions to distin-

guish TFP from output growth effects. On the other hand, we also demonstrate how modifying

structural models to make weather explicit permits (i) direct incorporation of plausibly causally

identified impact estimates, (ii) accounting for macroeconomic adaptation through endogenous

adjustments in savings and investments, and (iii) computing welfare costs of changes in climatic

risks. These three goals match the desirable properties of climate impact quantification identified

by Auffhammer (2018) and Greenstone (2016).

On the quantitative modeling side, our analysis complements several advancements in the

literature. Perhaps most closely related in methodology, Fried (2019) presents a dynamic general

equilibrium model of the U.S. economy where heterogeneous households face risks of capital de-

struction from storms. She presents an original calibration using, e.g., U.S. Federal Emergency

Management Agency (FEMA) disaster assistance across regions, and utilizes the model to quan-

tify adaptation capital, FEMA policy effects, and the role of adaptation in mitigating welfare

costs from future storm intensity increases. Hallegatte et al. (2007) develop a ‘non-equilibrium

dynamic model’(NEDyM) of disasters and apply it to extreme weather events (albeit not cy-

4 More and Diaz (2015) ultimately focus on the TFP pathway. Supplementary results for the depreciation
pathway suggest broadly similar patterns but a significantly higher social cost of carbon. Gauging visually
from the relevant graphs, the SCC appears to reach well over $1,500+ per ton by 2080 for depreciation
damages, compared to around $1,000 per ton for the TFP pathway in the benchmark.

5 Alternative approaches include, e.g., Bansal and Ochoa (2011) who present a Long-Run Risk model calibrated
to their own estimates of temperature shock growth impacts. Consumption growth is a given process in this
model; that is, it is not a production-based growth model, thus side-stepping questions of impact mechanisms.

6 A growing number of studies present climate-economy models with growth impacts but without focus on
empirical connections. Bretschger and Valente (2011) provide a theoretical foundation for climate change
growth impacts through multiple channels (capital and TFP depreciation). Lemoine (2019) presents an
endowment economy-based IAM with temperature impacts on consumption growth to study the implications
of uncertainty for the SCC. Of course there is also a large general theoretical literature on the environment
and endogenous growth (e.g,. Bovenberg and Smulders, 1995).
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clones)7 in Europe. NEDyM builds on a Solow growth model with limits on reconstruction

investment and non-clearing short-run labor and goods markets. As both our model structure

and research goals are fundamentally different, we abstract from some of the important nuances

featured in these studies, and focus instead on detailed linkages to empirical reduced-form ap-

proaches and long-run growth impacts under aggregate risk.8 The broader literature also features

seminal contributions on rare disasters in macroeconomics and finance (e.g., Barro, 2006; Pindyck

and Wang, 2013), but cyclones are typically not examples of such rare disasters.9

Lastly, we contribute new estimates of the impact of a major climate risk - tropical cyclones

- on the social cost of carbon. Previously, Narita, Tol, and Anthoff (2009) used the FUND

model to estimate climate change impacts on direct cyclone damages, fatalities, and the SCC.

Our analysis advances their approach in several ways including by (i) adding TFP damages, (ii)

estimating country-specific damage functions over wind speeds, (iii) estimating country-specific

cyclone probability distributions based on new climatological research (Emmanuel et al., 2008)

and (iv) formally computing expected damages. Despite these new features, we ultimately find

a similar result, namely that cyclones add only modestly to the optimal global carbon price.

This aggregate result masks considerable global heterogeneity, however, and for many countries

- including the United States - cyclone risk changes are likely to be a first-order climate concern.

2 Revisiting Empirical Approaches

2.1 Data

The first step in our analysis is to compile a harmonized global panel of cyclones and relevant

economic indicators at the country-year level.

Cyclone Data: Building on best practices in the literature (Hsiang and Jina, 2014), we gather

historical global tropical cyclone tracks from the International Best Track Archive for Climate

Stewardship (IBTrACS; Knapp et al., 2010). Considered the most comprehensive record of global

7 Hallegatte (2009) combines empirical direct cyclone impact estimates for the United States with estimates of
the relationship between direct and indirect losses (based on a case study applying an Input-Output model to
Hurricane Katrina’s sectoral impacts) to project total economic losses from hurricanes in the United States
both with and without climate change-induced hurricane intensity increases.

8 For example, besides structural differences, Fried (2019) features no aggregate risk from storms which are
assumed to be evenly distributed across space in the United States. In contrast, we study aggregate growth
impacts of cyclone risk across 40 vulnerable countries. Similarly, Hallegatte et al. (2007) focus on short-run
transitional additions to overall disaster costs. While we also depart from the standard Ramsey model to
capture the persistence of disaster losses, our model allows for long-run growth effects through changes in
asset allocations and savings rates (exogenous in NEDyM).

9 Cyclones are common in many countries and physically limited (Emanuel and Holland, 2011). Pindyck and
Wang (2013) define catastrophic shocks as reducing capital by "more than 10 or 15 percent." In our data,
even the 95th percentile of capital destruction is only 2.8 percent.
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historical tropical cyclone tracks by the World Meteorological Organization, IBTrACS contains

best track records of cyclone position and intensity characteristics collected from meteorological

agencies across the world. We focus on 1970-2015, the post-satellite era for which cyclones have

been most reliably tracked. For all 3,346 cyclone landfalls during this period, we calculate cyclone

intensity metrics including annual maximum wind speed at landfall (in knots) and annual energy

(the sum of cubes of wind speeds recorded within a country), a metric based on the power dis-

sipation index developed by Emanuel (2008).10 We process the tracks in ArcGIS and aggregate

data up to the country-year level.11 Next, in order to estimate future changes in cyclone risks,

we incorporate 68,000 simulated future tropical cyclone tracks based on advancements in clima-

tological research by Kerry Emanuel and co-authors (Emanuel, 2008; Emanuel, Sundararajan,

and Williams, 2008). These synthetic tracks and their usage are described in detail in Section 4.

Macroeconomic Indicators: We collect annual national-level macroeconomic indicators in-

cluding real GDP (2011 $US), physical and human capital stocks, and population from the Penn

World Tables 9.0 ("PWT", Feenstra et al., 2015). We also collect educational attainment esti-

mates from Barro and Lee (2012). Though not directly used in our analysis, we further obtain

World Bank data (from World Development Indicators) on several other macroeconomic indica-

tors (gross capital formation and imports, foreign direct investment, and government surplus all

as percentage of GDP) included in analyses such as Noy (2009) in order to construct a comparable

sample based on data availability (described in Section 2.1.2).

Geography: Country areas and absolute latitudes are collected from the Harvard WorldMap.

We calculate the fraction of a country’s population residing within 100 kilometers of navigable

water (defined as a coast, major river, or major lake) in ArcGIS using geospatial shoreline

data from NOAA’s Global Self-consistent, Hierarchical, High-resolution Geography Database

and population data from the Gridded Population of the World v4 produced by the Center

for International Earth Science Information Network (CIESIN) at Columbia University and as

published through NASA’s Socioeconomic Data and Applications Center (SEDAC). We calculate

in ArcGIS the fraction of a country’s land area in a tropical climate zone based on Köppen-Geiger

climate classification maps provided by Rubel and Kottek (2010). Finally, we collect information

on countries’populations living below five meters of elevation from the Low Elevation Coastal

Zone Urban-Rural Population and Land Area Estimates, from CIESIN and SEDAC.

Institutions: We consider several measures of institutions across countries, including the

10 Given that some cyclone wind speeds are listed as zero while a cyclone necessarily has non-zero wind speeds,
we interpolate missing wind speeds from minimum pressure readings following Atkinson and Holliday (1977).
For a minority of observations missing both wind and pressure, we assume a wind speed of 35 knots for
categorized cyclones and 25 knots for tropical depressions. Lastly, we convert 1 minute sustained wind
speeds to 10 minute sustained wind speeds for unit consistency.

11 We process the data without a dedicated wind-field model. For recent advancements on such modeling, see,
e.g., Strobl (2011), Hsiang and Narita (2012), Hsiang and Jina (2014).
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"Statistical Capacity Rating" from the World Bank and the "Corruptions Perception Index"

from Transparency International. In line with the broader disasters literature (e.g., Noy, 2009;

McDermott et al., 2014), we consider the World Bank’s measure of domestic credit provided

by the financial sector (as a percentage of GDP) as a proxy for financial market development.

Finally, we obtain estimates of natural disaster insurance rates from MunichRe’s NatCatService,

a leading industry data source on disaster losses. We specifically collect data on insured versus

total economic losses from meteorological events from 1998-2018 by country income group, and

compute the average insured fractions.

Cyclone Damages: Finally, we obtain cyclone damage estimates from two sources. Our

benchmark measure of property damages and fatalities is gathered from EMDAT, the Interna-

tional Disaster Database (Guha-Sapir et al., 2016). EMDAT is the most comprehensive publicly

available database on disaster losses and arguably the most widely used in the literature (e.g.,

Skidmore and Toya, 2002; Raddatz, 2007; Noy, 2009; Hsiang and Narita, 2012; etc.). At the same

time, EMDAT data are subject to certain data quality caveats (e.g., Hsiang and Narita, 2012).

While comparative analyses with proprietary damage data from global re-insurance companies

fail to indicate that these would necessarily dominate EMDAT data coverage (Guha-Sapir et al.,

2002), for robustness, we also consider damage estimates from MunichRe. We specifically use

country-year aggregates of total direct losses from cyclones as computed by Neumayer, Plumper,

and Barthel (2014) from the MunichRe database.

2.1.1 Cross-Sectional Estimates

Conceptually, a natural starting point for exploring the association between the climate and

economic outcomes has been through cross-sectional analyses. As famously noted byMendelsohn,

Nordhaus, and Shaw (1994) in an early empirical study of agriculture and climate, a cross-

sectional approach enables researchers to study the independent variable of interest - the long-

run climate - and thus impacts net of all relevant adaptation margins. A core concern with this

approach is omitted variable bias, on account of which many scholars have considered panel and

mixed approaches instead (Auffhammer, 2018). Here, we nonetheless begin with a discussion of

the cross-sectional approach. We argue that, in the context of natural disasters and economic

growth, cross-sectional analyses provide both unique insights and entail conceptual limitations

above and beyond standard econometric concerns which are important to consider. For example,

even a perfectly identified cross-sectional regression would provide only limited insights into

welfare and Integrated Assessment Model (IAM) quantification, but can inform the structure of

IAMs seeking to capture cyclone growth impacts.

In the empirical literature, Skidmore and Toya (2002, "ST") present an early and highly

influential analysis which regresses countries’average 1960-90 growth rates on disaster metrics
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such as the average number of climatic events per year in country j in a sample of 89 coun-

tries. They document a positive correlation between disasters and growth. This result differs

markedly from subsequent literature which typically finds negative impacts in panel analyses, as

discussed in Section 2.1.2. Hsiang and Jina (2015) moreover document a negative cross-sectional

relationship between average cyclone-induced capital depreciation and growth. From an empir-

ical perspective, one may first raise questions about Skidmore and Toya’s results vis-à-vis the

literature based on the data differences. For example, ST (2002) use countries’reported disaster

occurrences in EMDAT to measure general disaster risk, which are subject to several inclusion

criteria and thus constitute a partly selected sample. More recent work has thus moved towards

using meteorological data to measure climatic events (e.g., Hsiang and Jina, 2014). More broadly,

modern data also span a longer time period (+25 years since 1990) and larger sets of countries.

To begin our empirical examination, we first revisit a cross-sectional specification building

on Skidmore and Toya (2002) in our harmonized global dataset. Specifically, we regress each

country j′s average growth rate from 1970-2015 (gj) on different cyclone risk measures (µε,j)

and a host of control variables (Xj), including the fraction of land area in the tropics, absolute

latitude, our water access measure, an institutional quality proxy, and initial GDP per capita.12

gj = β0 + β1µε,j +Xj
′β + εj (1)

Table 1 presents the results. Column (1) confirms that a significant positive correlation between

economic growth and ST’s main disaster risk measure, the natural logarithm of disaster counts

(per land area), survives in our extended global sample using modern meteorological data. Before

describing the rest of the results, we discuss their theoretical foundations.

Conceptually, cross-sectional regressions capture the impact of average storm risk on average

growth. Broadly speaking, a vast literature in macroeconomics analyzes the effects of different

kinds of (uninsurable) risks on economic growth and welfare (e.g., Bewley, 1977; Lucas, 1987;

Ayiagari, 1994; Krebs, 2003ab, etc.). In recent years, a number of theoretical analyses have

focused on natural disaster risks and growth in particular, including several studies that allow

disaster probabilities or damages to depend on pollution stocks. Examples of the latter include

Ikefuji and Horii (2012), Müller-Fürstenberger and Schumacher (2015), and Bretschger and Vino-

gradova (2016); Akao and Sakamoto (2013) characterize the effects of exogenous disaster risk on

growth. The theoretical insights we invoke here are based both on this literature and can also

be shown to hold within our own model (see Section 5 and Online Appendix).

12 A central challenge in correlating cyclone risk with economic growth is that the climate is not randomly
distributed across space, and likely correlated with other factors that may influence growth, such as geography
(Hall and Jones, 1996) and institutions (Acemoglu, Johnson, Robinson, 2001). We thus include these controls
for geography and institutional quality in the cross-sectional specification.
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From a macro-theoretical perspective, one may expect the relationship between cyclone risk

and long-run growth to be ambiguous in sign as economic risks can affect growth through nu-

merous channels. Though the details depend on the growth model in question, some general

mechanisms can be noted. First, an increase in economic risk may generally induce households

to save more, that is, to undertake precautionary savings (e.g., Bewley, 1977). Ceteris paribus,

an increase in savings rates can increase average growth rates across a range of models, including

(i) in a Solow growth model during the transition to a long-run balanced growth path, (ii) in an

endogenous growth model with aggregate capital externalities (see, e.g., Devereux and Smith,

1993), (iii) in an AK-type endogenous growth model (see, e.g., Krebs, 2006), and (iv) in a Lucas

(1988)-style model of human capital-driven growth (see, e.g., Ikefuji and Horii, 2012). Second,

an increase in storm risks can alter growth by changing households’optimal portfolio choice.

That is, to the extent that cyclone risk alters the relative attractiveness of different investment

options (e.g., human versus physical capital), an increase in cyclone risk may also alter over-

all returns by changing the composition of an economy’s investments. Ceteris paribus, such a

portfolio effect could lower average growth through a ‘flight to safety’of lower return assets,

or could increase average growth by increasing human capital in models where it is a driver of

growth (as in, e.g., Akao and Sakamoto, 2013). A third impact channel is that higher storm risk

may have a direct negative effect on growth (ceteris paribus) by increasing average depreciation

rates, in line with Hisang and Jina’s (2015) empirical findings, and also by lowering average

productivity. Importantly, from a theoretical perspective, the overall impact of cyclone risk on

long-run growth is thus ambiguous in sign. In the context of our model (presented in Section 2),

we further demonstrate how this relationship may specifically be non-monotonic even within a

given economy (see Online Appendix).

In light of these considerations, we next extend the standard cross-sectional specification (1) à

la ST to allow for quadratic effects of cyclone risk on growth. The results in Table 1 Columns (2)

and (4) confirm significant non-monotonicity: cyclone risk is positively correlated with economic

growth initially, but this association turns negative at higher levels of risk. As a final empirical

check on the relevance of the aforementioned theoretical mechanisms, we add controls for average

savings rates and educational attainment to (1). The results in Columns (3) and (5) reveal that

the initial positive association between cyclone risk and growth is attenuated in both magnitude

and precision once these controls are added, consistent with the theoretical prediction that higher

savings and human capital investment rates are a part of the underlying mechanism.
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Table 1: Cross-Sectional Cyclone Risk and Growth Association
Dependent Variable: Avg. Real GDP/Capita Growth g1970−2015,j
Cyclonesj Measure: ln(Landfallssqkm ) Landfalls/sqkm Max. Wind/sqkm

(1) (2) (3) (4) (5)
Cyclonesj 0.100*** 185.934** 135.233 7.077** 5.765

(0.032) (76.478) (93.210) (3.516) (3.565)

(Cyclonesj)
2 -6,470.275** -6,647.325* -11.266** -11.733*

(2,695.255) (3,999.375) (5.562) (6.281)

SavingsRatej 0.093*** 0.092***

(0.022) (0.022)

YearsSchoolingj 0.009 0.020

(0.064) (0.063)

Tropics (%Area) -0.009* -0.011** -0.008 -0.010** -0.007

(0.005) (0.005) (0.005) (0.005) (0.005)

Abs. Latitude -0.015 -0.021 -0.017 -0.021 -0.016

(0.013) (0.014) (0.014) (0.014) (0.014)

Water Proximity (%Area) 0.001 0.004 0.012*** 0.004 0.013***

(0.005) (0.005) (0.005) (0.005) (0.005)

Institutions (CPI2015) 0.030*** 0.035*** 0.016* 0.035*** 0.015

(0.009) (0.009) (0.009) (0.009) (0.009)

Initial GDP/Cap.1970 -0.000*** -0.000*** -0.000*** -0.000*** -0.000***

(0.000) (0.000) (0.000) (0.000) (0.000)

Observations 131 132 113 132 113

Adj. R-Squared 0.303 0.274 0.392 0.261 0.398

Table presents OLS regression of countries’avg. real GDP per capita growth rate (1970-2015) on natural

log of avg. number of cyclone landfalls per year +0.0000001 normalized by area (Col. 1), the avg. number

of landfalls per year normalized by area in levels (Cols. 2, 3) and squared (Col. 3), or avg. max. sustained

wind speed per year normalized by area in levels (Cols. 4, 5) and squared (Col. 5). All specifications control

for the share of land area in the tropics, absolute value of latitude, fraction of pop. within 100km of major river,

lake, or coast, the Transparency International Corruption Perceptions Index, initial (1970) GDP per capita, and

a constant. Cols. (3) and (5) further control for avg. savings rates and avg. years of schooling. Standard

errors are heteroskedasticity-robust and presented in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

Lessons and Limitations: Climate change is altering the distribution of cyclone risks across
the globe (e.g., Emanuel, 2008; see also Section 4). In principle, the coeffi cients of a cross-

sectional specification such as (1) thus represent the relevant thought experiment for predicting

the corresponding long-run growth impacts of climate change. The results are consistent with the

theoretical predictions that growth impacts may be empirically relevant and occurring through

countervailing channels such as precautionary savings and direct losses. While the cross-sectional

results are thus qualitatively informative, there are at least two core limitations on their quan-

titative use in inferring climate change costs. The first is the potential for omitted variable bias

inherent in cross-country comparisons. The second and more fundamental concern is that growth
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impacts need not be informative about welfare. It is long known that changes in economic risk

can affect growth and welfare in opposite ways (see, e.g., Devereux and Smith, 1993). For ex-

ample, if higher cyclone risk increases growth by increasing precautionary savings, this change is

clearly welfare-reducing. The Online Appendix formally confirms the possibility of higher growth

but lower welfare in the context of our model. Consequently, even a perfectly identified cross-

sectional growth regression would not be suffi cient to quantify welfare impacts of cyclone risk

changes. In sum, these results thus highlight the need for a structural approach to capture both

the welfare and general equilibrium effects of climate-induced changes in future cyclone risks.

2.1.2 Panel Estimates

The most common empirical approach to studying natural disaster impacts on growth is to use

panel variation. This literature has documented a range of results, with most finding broadly

negative effects of varying magnitude and duration (reviewed by, e.g., Kousky, 2014) but some

finding no impacts in all but the most extreme disasters (Cavallo et al., 2013). Prior research

has already identified several study design features which can contribute to differences in results.

For example, Loayza et al. (2009) document heterogeneous impacts across disaster types (e.g.,

earthquakes versus storms). Similarly, different proxies for disaster intensity (e.g., property

damages versus fatalities) have been shown to yield different results (e.g., Noy, 2009).

Thus, we next consider a panel specification in our harmonized global sample. That is, we

focus on one disaster type (cyclones), meteorological intensity measures (e.g., maximum wind

speeds), and a standard panel fixed-effects specification similar to Hsiang and Jina (2014):

gj,t = γj + δt + (θj · t) +
L∑
l=0

β1+lεj,t−l + βInt(qj,t · εj,t) + εj,t (2)

Here, gj,t is a country’s annual real GDP per capita growth rate, γj are country fixed-effects,

(θj · t) are country-specific linear time trends, and εj,t−l are cyclone realization measures (e.g.,
maximum wind speed) up to lag L. Here we focus on contemporaneous impacts (L = 0), but

consider richer lag structures in our main empirical impact channel estimation in Section 3. The

empirical literature has frequently found that disaster impacts vary with country characteristics,

particularly the level of development and the quality of (financial) institutions (e.g., Kahn, 2005;

Loayza et al., 2009; Noy, 2009; Raddatz 2009; Fomby, Ikeda, and Loayza, 2013; McDermott

et al., 2014). Specification (2) consequently allows for the impact of cyclones to vary with

covariates qj,t, specifically domestic credit or lagged GDP per capita.13 Standard errors εj,t are

13 We lag GDP to avoid endogeneity to the year t disaster realization, but consider contemporaneous credit as
it reduces impacts precisely through its response to disasters.
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heteroskedasticity-robust and clustered at the country level.

In reviewing the empirical literature, we document another potential source of variation in

results: sample composition based on macroeconomic control variable availability. That is, prior

studies differ in the supplemental controls they include in panel growth regressions alongside

disaster measures. One classic example, Noy (2009), includes a rich set of controls such as gov-

ernment budget surplus and foreign exchange reserves, permitting a final sample of 109 countries.

Numerous other recent studies end up with similar or smaller samples,14 whereas, e.g., Cavallo

et al. (2013) use a synthetic controls approach and construct certain variables permitting a sam-

ple of 196 countries. In order to gauage whether such sample differences may be contributing

to differences in studies’results, we estimate (2) for two samples: (i) "Unfiltered" includes all

available countries (182 countries), whereas (ii) "Has Controls" includes only country-years for

which control variables such as used by Noy (2009) and others are available in our sample.15 We

do not actually include those controls in the regressions so as to isolate sample effects.

Tables 2 present the results for landfall counts and maximum wind speed (normalized by land

area) as intensity metrics. Results for energy are presented in the Online Appendix (Table A1).

First, the results generally confirm that cyclone strikes have a negative effect on contemporaneous

economic growth. That is, in the same global analysis that yields a positive cross-sectional

correlation between growth and cyclone risk, we find a negative effect of cyclone strikes. Second,

we note that the statistical precision of these results differs notably across the unfiltered and

data-restricted country samples. In the unfiltered sample, contemporaneous cyclone impacts

are precisely estimated only for energy, whereas they are generally significantly different from

zero in the data-restricted sample, broadly in line with some of the underlying heterogeneity

in the literature.16 Table 3 compares some key attributes of the two samples. We find that

countries in the typical data-restricted sample feature significantly higher average Statistical

Capacity Ratings, significantly lower volatility in GDP growth, and significantly larger average

populations than the unfiltered sample, likely contributing to the difference in precision of the

estimated results. Finally, in line with prior studies, we see that these negative growth impacts

14 For example, Loyaza et al. (2012) have a sample of 94 countries and Fomby et al. (2013) study 84 countries.
15 We specifically define a sample of country-years that have data on gross capital formation, domestic credit,

imports as percentage of GDP, foreign direct investment, government surplus, and countries that have at
any point had institutional quality ratings from the International Country Risk Guide (ICRG). This sample
does not match Noy’s exactly due to changes in source databases over time. We also do not purchase the
ICRG data and utilize public metadata instead (URL: https://epub.prsgroup.com/available-countries). If
countries have entered this database since the time of Noy’s (2009) analysis, they may also change the
relative samples. Importantly, our goal is not to replicate Noy’s sample per se, but to demonstrate how a
representative example of standard controls can affect the sample precision and results.

16 For example, studies such as Noy (2009) have found significant negative effects of disasters on growth, whereas
Cavallo et al. (2013) do not except in the largest disasters. Of course, there are many other methodological
differences across these and other studies, and it is beyond the scope of our study to formally decompose
differences in results across these factors.
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are generally lower in countries with better financial institutions (proxied by domestic credit,

Columns (2) and (5)) and higher levels of development (Columns (3) and (6)).

Table 2: Panel Analysis: Cyclone Strikes and Growth
Dependent Variable: Real GDP/Capita Growthj,t

Unfiltered Has Controls

(1) (2) (3) (4) (5) (6)

#Landfalls/sqkmj,t 0.637 -1.970 -19.395 -67.112** -472.355** -1,212.980***

(1.282) (20.518) (33.566) (29.058) (191.126) (427.418)

Creditj,t·(#Landfalls/sqkmj,t) 0.010 5.370**

(0.273) (2.669)

ln (GDP p.c.)j,t−1·(#Landfalls/sqkmj,t) 1.962 115.904***

(3.308) (41.925)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.220***

(0.013) (0.033)

Adj. R-Squared 0.110 0.0985 0.165 0.177 0.201 0.277

Max. Wind/sqkmj,t 0.004 -0.899 -2.708 -2.280*** -3.731** -5.183

(0.050) (1.202) (2.065) (0.298) (1.821) (9.959)

Creditj,t·(Max. Wind/sqkmj,t) 0.010 0.020

(0.015) (0.023)

ln (GDP p.c.)j,t−1·(Max. Wind/sqkmj,t) 0.275 0.306

(0.207) (0.993)

Domestic Creditj,t -0.000 -0.000**

(0.000) (0.000)

ln (GDP p.c.)j,t−1 -0.103*** -0.219***

(0.013) (0.033)

Adj. R-Squared 0.110 0.0993 0.166 0.178 0.200 0.278

Observations 7,573 5,690 7,573 1,978 1,978 1,978

#Countries 182 171 182 116 116 116

Country F.E.s: Yes Yes Yes Yes Yes Yes

Year F.E.s: Yes Yes Yes Yes Yes Yes

Country-Trends: Yes Yes Yes Yes Yes Yes

S.E. Cluster Country Country Country Country Country Country

Table presents regression of countries’real GDP per capita growth rate in year t on number of cyclone landfalls per sqkm. (top
panel) or max. wind speed per sqkm. in year t plus controls for lagged natural log of real GDP per capita in level and interacted
with storms (Cols.3, 6) or domestic credit provided by financial sector (%GDP) in level and interacted withstorms (Cols. 2, 5). All

regressions include country fixed effects, year fixed effects, country-specific linear time trends, and a constant. Standard errors

are heteroskedasticity-robust and clustered at the country level. (*** p<0.01, ** p<0.05, * p<0.1).
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Table 3: Sample Comparison
Sample

"Unfiltered" "Has Controls" Diff. (SE)

Population Mean 31.1 49.1 -18.0

(3.40)***

Statistical Capacity Rating Mean 68.2 74.2 -6.0

(0.70)***

Real GDP p.c. Growth Mean 1.8% 2.2% -0.4%

(0.12)**

Var. 6.7% 4.2% f = 2.53***

Table compares means or variance for indicated variables across "Unfiltered" and "Has Controls"

samples of country-years. Means are compared with two-sided t-tests (with Welch approximation

for unequal variances). Variance compared with F-test. (*** p<0.01, ** p<0.05, * p<0.1).

Lessons and Limitations: On the one hand, panel specifications such as (2) are clearly
attractive in terms of econometric identification. Cyclone impacts β1 are identified based on

variation in cyclone realizations across years within each country, and thus plausibly causal. On

the other hand, given the findings and theoretical considerations described in Section 2.1.1, we

would expect the fixed effects related to countries’average growth rates in (2), γj and θj, to

remain endogenous to cyclone risk. This endogeneity becomes important if one wishes to use

panel estimates to predict the growth impacts of climate change. That is, while some empirical

studies have analyzed climate change impacts by evaluating (2) at alternative potential future

storm realizations ε̃j,τ (e.g., Hsiang and Jina, 2014), our analysis suggests that this approach

is incomplete as climate change will also alter baseline cyclone risks and thus average growth

rates as in Table 1. In a prior version of this paper (Bakkensen and Barrage, 2016), we explored

a two-step estimator to evaluate cyclone impacts through both channels; however, this analysis

remains subject to the core concern that growth impacts do not correspond to welfare effects.

Despite these limitations, panel output growth regressions can provide essential insights to

inform the design of environment-economy models. For example, limited financial markets are

clearly an empirically relevant contributor to vulnerability, but not accounted for in many IAMs.

Another common empirical finding is that negative cyclone strike impacts on output levels appear

persistent (e.g., Raddatz, 2007; Strobl, 2011; Hsiang and Jina, 2014; Elliott et al., 2015). This

stylized fact is at odds with a standard Ramsey model, which would imply a growth rebound

after the initial negative impact, motivating the exploration of alternative frameworks.
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3 Modified Empirical Approach

3.1 Total Factor Productivity

Though the empirical literature frequently focuses on GDP per capita growth as an outcome

variable, these impact estimates are diffi cult to incorporate directly into macroeconomic climate-

economy models as GDP growth is typically endogenized. In contrast, climate impacts upon

structural model parameters are straightforward to interpret and utilize. We thus begin by con-

ducting a standard growth accounting exercise that decomposes cyclone output growth impacts

into productivity versus factor input changes. The appropriate empirical specification depends

on the structure of the climate-economy model for which the estimates are intended. First,

in the seminal DICE framework, countries produce GDP Yj,t with capital Kj,t and labor L
Pop
j,t

(measured by population) inputs via Cobb-Douglas technology:

Yj,t = ADICEj,t KαD
j,t (LPopj,t )1−αD (3)

Taking logs and rearranging yields:

ln(ADICEjt ) = ln(Yj,t)− αD ln(Kj,t)− (1− αD)
[
ln(LPopj,t )

]
(4)

Using Penn World Tables (PWT) data on GDP, capital stocks, and populations, one can thus

back out ‘DICE TFP’from (4) given the relevant capital share (αDICE = 0.67).

For DICE, climate change impacts on human capital factors such as educational attainment

should thus be counted in TFP. In contrast, other models may endogenize human capital ac-

cumulation. Indeed, in light of the potential links between cyclone risks and human capital

(e.g., Skidmore and Toya, 2002; Ikefuji and Horii, 2012), our model specifies production as a

Cobb-Douglas aggregate of physical and human capital stocks:

Yj,t = Aj,tK
αj,t
j,t H

1−αj,t
j,t (5)

For this specification, the appropriate TFP series is given by:

ln(Aj,t) = ln(Yj,t)− αj,t ln(Kj,t)− (1− αj,t)
[
ln(hcj,t) + ln(LPopj,t )

]
(6)

We map (6) into the data following standard approaches (e.g., Hall and Jones, 1999) that specify

human capital-augmented labor Hj,t as the product of the number of workers Lj,t and human

capital per worker hcj,t. The latter, in turn, is provided by PWT based on schooling data and

returns to education estimates (Inklaar and Timmer, 2013). As our model features inelastic labor
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supply, we also use LPopj,t as a measure of workers. Following Gollin (2002) we assume common

labor shares across countries and set 1− αjt = 0.67 ∀j, t.
The preferred specification de-trends each TFP series log-linearly through the inclusion of

country-specific time trends (γj · t) and year fixed-effects δt in an estimating equation which
follows the standard panel approach (analogous to (2) but for TFP):

ln(Aj,t) = γj + δt + (θj · t) +

L∑
l=0

βA1+lεj,t−l + εj,t (7)

where γj denotes country fixed-effects and εj,t−l are cyclone realization measures up to lag L.

Standard errors εj,t are heteroskedasticity-robust and clustered at the country level. We consider

a range of values of L. Table 4 presents results for maximum wind speed per sqkm.

Table 4: TFP Impacts
(1) (2) (3) (4) (5)

Dep. Variable: ln (ADICEjt ) ln (ADICEjt ) ln (Ajt) ln (Ajt) ln (ADICEjt )
Labor Measure: Pop. Pop. hc·Pop hc·Pop Pop.

Max. Wind/sqkmj,t -1.453* -2.162* -1.485* -2.061* -0.018

(0.863) (1.174) (0.859) (1.171) (0.237)

Max. Wind/sqkmj,t−1 -2.249** -2.095* 0.259

(1.118) (1.082) (0.188)

Max. Wind/sqkmj,t−2 -2.303* -2.129* 0.269*

(1.250) (1.207) (0.162)

Max. Wind/sqkmj,t−3 -1.852 -1.821 0.140

(1.265) (1.241) (0.149)

Max. Wind/sqkmj,t−4 -1.554* -1.497* -0.095

(0.903) (0.889) (0.139)

Obs. 5,649 5,649 6,161 5,649 6,997

Clusters 144 144 144 144 180

Adj. R2 0.700 0.625 0.642 0.625 0.678

AIC -8551 -8263 -8447 -8160 -9065

BIC(n=#Clusters) -8420 -8133 -8316 -8029 -8924

Table presents regression of natural log of countries’TFP on a constant, country- and year-fixed effects, country-specific

linear time trends, and max. wind speed per sqkm. Cols. 1, 2, and 5 use DICE TFP. Cols. 3 and 4 use benchmark model TFP.

Cols. 1-4 use consistent sample with PWT (human) capital data. Col. 5 uses unfiltered sample incl. countries without education,

labor data. Standard errors are heteroskedasticity-robust and clustered at country level. *** p<0.01, ** p<0.05, * p<0.1.

The results indicate significant negative impacts of cyclone strikes on both TFP measures.

Columns (1)-(4) present estimates for a consistent sample of countries. While both the Bayesian

and Akaike information criteria are minimized for the contemporaneous impacts specifications

(Cols. 1 and 3), we also find negative and at least marginally precisely estimated TFP im-
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pacts persisting up to around 5 years. The Online Appendix shows results for alternative lag

structures. Additional lags reduces the estimates’precision, but leave the magnitudes similar.

For completeness, Column (5) presents estimates of the DICE TFP impacts on the unfiltered

sample of available country-years for this indicator. That is, compared to Column (2), Column

(5) add 36 countries that lack PWT data on education and/or employment, which renders the

cyclone impact estimates noisy, echoing the results of Section 2.1.2. The Online Appendix shows

additional results for specifications that (i) de-trend TFP through HP-filtering, which leads to

broadly similar results, and (ii) use energy as cyclone intensity measure, which yields somewhat

noisier estimates. Overall, the results thus suggest that one of the channels through which cyclone

strikes affect realized growth is by lowering TFP.17

3.2 Depreciation

While there is limited literature guidance for the estimation of cyclone TFP impacts, numerous

studies have quantified cyclone destruction of property and human life as a function of storm

characteristics. Following these studies (e.g., Kahn, 2005; Nordhaus, 2010b; Schumacher and

Strobl, 2011; Hsiang and Narita, 2012), we specify polynomial damage functions:

ηkj,t(εj,t) ≡
PropertyDamagesj,t

Kj,t

= ξk1j,t(εj,t)
ξk2j,t (8)

ηhj,t(εj,t) ≡
Fatalitiesj,t

Lj,t
= ξh1j,t(εj,t)

ξh2,j,t

Our setup allows the damage function coeffi cients to vary across countries and time, in line with

the results of prior literature. We specifically estimate (8) in logs:18

ln(ηmj,t) = x′j,tβ
m+βmε ln εj,t+(lnεj,t · xj,t)′γm + εj,t, m ∈ {k, h} (9)

Given (9) one can infer countries’vulnerability coeffi cients as a function of their covariates x′j,t:

ξ̂m1,j,t = ex
′
j,tβ̂

m

(10)

ξ̂m2,j,t = β̂ε + xj,t
′γm

Table 5 displays the results for our preferred cyclone measure of maximum wind speed (per

square kilometer). As expected, depreciation losses are increasing in wind speeds, albeit with

17 Loayza et al. (2012) consider a productivity impact channel for disasters by including capital investment
rates in several output impact regressions, but do not estimate a structural damage function for TFP impacts.

18 Since we use the same explanatory variables for physical capital and fatality regressions, a seemingly unrelated
regression (SUR) approach would not change the results.
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heterogeneous steepness across countries. Column (1) adopts country fixed effects as damage

covariates x′j,t. This specification allows countries to differ in baseline damages conditional on

experiencing a cyclone, but with common curvature in wind speed. Given the empirical litera-

ture’s finding that damage curves are considerably steeper in the United States (e.g., Nordhaus,

2010b; Strobl, 2011) than globally (Hsiang and Narita, 2012; Bakkensen and Mendelsohn, 2016),

Column (2) presents a U.S.-only specification, which confirms this pattern.19

Finally, Columns (4) and (6) allow depreciation damages to vary with countries’ levels of

economic development and the population share living below five meters elevation in coastal

zones. Importantly, while there are many other potential determinants of countries’ cyclone

vulnerability, these are two covariates we would expect to have first-order relevance and for which

we can obtain projections of future levels in order to consider potential changes in countries’

future vulnerabilities. As expected, the results indicate that both physical and human capital

depreciation impacts are significantly larger in countries with larger population shares in low-

lying coastal areas, and significantly mitigated in countries with higher economic development.

Table 5: Depreciation Impacts
Dependent Variable: ln(PropertyDamagesj,t/Kj,t) ln(Fatalitiesj,t/Lj,t)

(1) (2) (3) (4) (5) (6)
ln(MaxWindj,t) 1.112** 4.704*** 2.034*** 2.209*** 0.771*** 1.967***

(0.530) (0.959) (0.564) (0.559) (0.226) (0.339)
ln(MaxWindj,t)· ln(GDP pc)j,t−1 -0.164** -0.201*** -0.150***

(0.064) (0.064) (0.037)
ln(MaxWindj,t)·(Pct. Below 5m)j,t 0.023*** 0.011**

(0.007) (0.005)
ln(GDP pc)j,t−1 -1.940*** -2.352*** -2.088***

(0.644) (0.645) (0.370)
Pct. Below 5mj,t 0.198*** 0.081**

(0.062) (0.038)
Constant 1.456 45.304*** 13.797** 16.045*** -6.891*** 10.373***

(4.784) (10.957) (5.574) (5.520) (2.042) (3.357)
Country Fixed Effects? Yes U.S. Only No No Yes No
Observations 356 29 356 356 472 471
Adj. R-Squared 0.0350 0.401 0.218 0.236 0.0316 0.489
Table presents regression of natural log of fractions of capital stock destroyed (Cols. 1-4) or population killed (Cols. 5-6) on

natural log of MaxWindj,t (max. wind speed normalized by country area), lagged GDP per capita levels and max. wind

interactions (Cols. 3, 4, 6), the percentage of population living below 5 meters elevation in levels and max. wind interactions

(Cols. 4, 6), and country fixed-effects (Cols. 1, 5). Col. 2 restricts sample to U.S. storms only. Damage data source is EMDAT.

Heteroskedasticity-robust standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1).

19 Quantitatively, the results may differ from studies normalizing damages by GDP as we study damages as a
fraction of countries’capital stocks, which are not equiproportional to GDP across countries.
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Table 5 is estimated using EMDAT data on cyclone damages. For robustness, we repeat

the specification using MunichRe data (see Online Appendix Table A6). On the one hand, the

MunichRe data yield steeper wind speed curvature estimates in the fixed effects specifications

(e.g., U.S. damage elasticity of 5.9 instead of 4.7). On the other hand, the specifications with

interaction terms are comparatively attenuated. We consider these results for robustness in our

structural analysis below.

4 Cyclone Risk Changes

The empirical estimates presented thus far quantify the impacts of weather shocks εj,t. Linking

these estimates to climate-economy models requires a quantification of how the probability distri-

bution of these shocks will change along with the global climate, indexed by global mean surface

temperature Tτ in decade τ , specifically cyclone probability density functions (pdfs) fj(ε|Tτ ).
The availability of atmospheric science data to estimate such pdfs was previously limited, forcing

some earlier literature to evaluate damage functions at the projected future means of cyclone

intensity, effectively computing damages at expected intensity rather than expected damages

(e.g., Narita, Tol, Anthoff, 2009; see also review by Ranson et al., 2014). Of course, if dam-

age functions δk(εj,t) are convex, this approach risks underestimating expected future impacts.

In this paper we gratefully take advantage of advances in climatological research from Kerry

Emanuel and co-authors (Emanuel, 2008; Emanuel, Sundararajan, and Williams, 2008; and as

utilized by Mendelsohn et al., 2012) to construct estimates of cyclone pdf s. Their work generates

68,000 simulated synthetic tropical cyclone tracks under each of the current (1980-2000) and

future climate, specifically 2080-2100 under the IPCC’s A1B emissions scenario and processed

through four different general circulation models. Our benchmark analysis focuses on results

using NOAA’s GFDL model (17,000 simulated tracks; Manabe et al., 1991), but we also con-

sider alternatives in our sensitivity analysis below. The synthetic cyclone tracks contain parallel

information to the historical record, such as storm latitude, longitude, and wind speeds at points

along the track life. Recent literature that has used synthetic tracks to inform both current

cyclone risk assessments (Hallegatte, 2007; Elliott, Strobl, Sun, 2015) and projections of direct

cyclone damages from climate change (Hallegatte, 2009; Mendelsohn et al., 2012).

In order to estimate cyclone pdfs at the country-year level, we conduct Monte Carlo simu-

lations based on current and future landfall frequencies and sampling from either the historical

cyclone record (to estimate current risk) or from synthetic tracks (to estimate future risk) (see

Online Appendix). Importantly, this process captures changes in expected future intensity driven

both by changes in the number and characteristics of storms. For landfall frequencies, we adopt

a Poisson distribution (Emanuel, 2013). For our preferred cyclone measure of maximum wind
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speeds, the literature has foundWeibull distributions to provide the best fit (Johnson andWatson

2007), which we consequently use to estimate cyclone pdfs for each country.20 To validate this ap-

proach, we compare the expected annual maximum wind speeds from the Weibull model against

empirically observed means in the data. The Weibull model reproduces the data extremely well,

with a correlation coeffi cient of 0.9982 (plotted in Online Appendix Figure A1).

In order to illustrate the potential impacts of climate change on cyclone risks, Figure 1 next

compares the current (from data) and projected future maximum wind speed distribution for

four example countries. The simulations indicate highly heterogeneous impacts, with cyclone

risk increases in some regions (e.g., United States), but decreases in others (e.g., Australia).

Countries are also predicted to experience heterogeneous changes in the variability of cyclone

intensity, with tightening distributions in some (e.g., India), but increasing variability in others.

Figure 2 presents results for a broader set of countries, specifically by comparing current annual

maximum wind speeds (x-axis) against expected future annual maximum wind speeds (y-axis).

By comparing the location of each point (country) against the plotted 45◦ line, we see again

some countries are predicted to experience substantial increases in average risk, whereas others

are predicted to see declines in average cyclone activity.
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20 While ‘fat tails’have been noted as a concern for some climate risks, cyclone wind speeds face a physical upper
bound (Holland and Emanuel, 2011), and fitting even a log-normal distribution can imply "meteorologically
unrealistic" upper tail behavior of excessive wind speeds (Johnson and Watson, 2007). Relatedly, Conte and
Kelly (2016) find that cyclone damages in the United States follow a fat tailed distribution due to the spatial
distribution of properties, but that household-level damages and the wind speed distribution are thin tailed.
We account for uniquely high U.S. damages by utilizing a separate capital depreciation elasticity.
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5 Stochastic Endogenous Growth Cyclone-EconomyModel

This section presents our country-specific stochastic endogenous growth cyclone-economy model

designed to incorporate the empirical evidence from Section 3. The framework builds closely on

Krebs (2003ab, 2006; see also Krebs et al., 2015), who develops a heterogeneous agent version of

this class of model to study the implications of idiosyncratic human capital and business cycle

risks for household savings, investment, growth, and welfare. We consider a representative agent

economy but allow for (i) correlated shocks to both human and physical capital, (ii) partial

insurance availability, and (iii) an application and damage specification to natural disaster risk,

specifically tropical cyclones. As the prior theory literature has analyzed disaster impacts in

other endogenous growth models (e.g., Ikefuji and Hoori, 2012), our fundamental contribution

here is that we bring such a model to the data. That is, we produce a novel integration of

empirical evidence into a structural model, and produce quantitative estimates of growth and

welfare impacts resulting from cyclone risk changes for 40 countries. In particular, we show

that making the econometrically identifying level of variation (weather realizations) explicit in

the structure of model allows for a straightforward integration of empirically estimated impact

functions into an environment-economy model.

22



5.0.1 Model Setup

Each country j is inhabited by a representative household who can invest in human capital (hj,t)

and physical capital (kj,t). Both assets are at risk for cyclone depreciation shocks ηhj (εj,t), η
k
j (εj,t)

that depend on realized disaster intensity εj,t.21 We represent financial market incompleteness

in a reduced-form way by assuming that fraction πj of damages can be insured at actuarially

fair rates, so that, with risk-averse agents, (1− πj) denotes the fraction of uninsured damages.22

The representative agent in country j chooses state-contingent plans for consumption cj,t and

investments in human and physical capital (xhj,t, x
k
j,t) to maximize:

maxEj,0

∞∑
t=0

βtu(cj,t) (11)

s.t. : cj,t + xkj,t + xhj,t = kj,tR
k
j,t + hj,tR

h
j,t (12)

kj,t+1 = (1− δk − πjµkj − (1− πj)ηkj (εj,t))kj,t + xkj,t

hj,t+1 = (1− δh − πjµhj − (1− πj)ηhj (εj,t))hj,t + xhj,t

kj,0, hj,0 given

Here, Rk
j,t and R

h
j,t denote returns to physical and human capital, δm denotes baseline depreci-

ation of asset m, and µmj ≡ Ej[η
m
j (ε)] denotes the expected cyclone damages to asset m. We

include insurance premia πjµmj in the capital laws of motion for ease of illustration as both assets

are produced linearly from the final consumption good. Disaster intensity follows some iid dis-

tribution εj,t ∼ fj(εj|Tτ ) in each country with mean µj,ε ≡ Ej[εj,t]. We suppress the dependence

of mean damages and mean intensity on the climate Tτ for notational simplicity.

Aggregate production by the representative firm rents households’factors Kj,t ≡ kj,tLj and

Hj,t ≡ hj,tLj in competitive national markets, where Lj denotes the country’s population.

max
Kj,t,Hj,t

Aj,t(εj,t)K
α
j,tH

1−α
j,t −Rk

j,tKj,t −Rh
j,tHj,t (13)

Here Aj,t(εj,t) ≡ Aj,t(1− ηA(εj,t)) denotes total factor productivity, which also depends on storm

realizations.23 Next, letting k̃j,t ≡ kj,t
hj,t

denote the household’s physical-human capital ratio, and

21 We now suppress the time subscripts on the damage functions ηhj (.), η
k
j (.) as the model treats these as

constant within the current steady-state. In comparing present and future steady-states, however, we later
allow for the possibility that damage functions change along with cyclone risks.

22 Properly microfounding this parameter would require a specification of international asset markets.
23 Our benchmark quantification focuses on contemporaneous TFP impacts of ηA(εj,t) = β̂A1 εj,t from Col. 1

in Table 4. For robustness we also consider a cumulative 5-year impact specification (ηA(εj,t) = (β̂
A
1 + β̂

A
2 +
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noting that, in equilibrium, by market clearing, k̃j,t = K̃j,t ≡ Kj,t
Hj,t

, factor returns are given by:

Rk
j,t = (α)Aj,t(εj,t) · (k̃j,t)α−1 (14)

Rh
j,t = (1− α)Aj,t(εj,t) · (k̃j,t)α

Let the household’s wealth at time t be defined by the sum of his physical and human capital:

wj,t ≡ kj,t + hj,t. Further let s̃j,t ≡ 1 − cj,t

wj,t(1+rj(k̃j,t,εj,t))
denote the household’s savings-out-of-

wealth ratio, let ωk(k̃j,t) ≡
(

k̃j,t

1+k̃j,t

)
be the share of the household’s wealth invested in physical

capital, and let δ
m

j ≡ δm+πjµ
m
j m ∈ {k, h} denote the known proportional annual losses of asset

m (baseline depreciation plus insurance premia). The household’s realized return on his portfolio

at time t is then given by the weighted sum of net returns on physical and human capital:

rj(k̃j,t, εj,t) ≡ ωk(k̃j,t)
[
Rk
j,t(k̃j,t, εj,t)− δkj − (1− πj)ηkj (εj,t)

]
(15)

+
(

1− ωk(k̃j,t)
) [
Rh
j,t(k̃j,t, εj,t)− δhj − (1− πj)ηhj (εj,t)

]
Finally, we assume that preferences are of the standard form:

u(cj,t) =
c1−γj,t

1− γ if γ 6= 1, = log(cj,t) if γ = 1 (16)

Equilibrium Growth Following Krebs (2003b), it is straightforward to show (see Online

Appendix) that the capital ratio k̃j and the savings rate s̃j that solve the household’s problem

in stationary equilibrium (where k̃j,t = k̃j and s̃j,t = s̃j) are jointly determined by:

s̃j =
(
βEj[(1 + rj(k̃

′
j, ε
′
j))

1−γ]
) 1
γ

(17)

0 = βEj


[
Rk
j (k̃j, ε

′
j)− δkj − (1− πj)ηkj (ε′j)

]
−
[
Rh
j (k̃j, ε

′
j)− δhj − (1− πj)ηhj (ε′j)

]
)

(1 + rj(k̃′j, ε
′
j))

γ

 (18)
Intuitively, optimal savings s̃j follows from the household’s Euler Equation, whereas (18) ex-

presses a no-arbitrage condition for human and physical capital. Equations (17)-(18) thus im-

plicitly characterize how cyclone risk affects equilibrium savings and investments which, in turn,

... + β̂A5 )εj,t) based on Col. 2 in Table 4. Given that our analysis compares steady-state growth rates, the
latter measure serves as upper bound on the implications of the lagged model.
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alter growth. Long-run or average growth then equals (see Online Appendix):

gj ≡ E

[
c′j
cj

]
= (s̃j)(1 + Ej[rj(k̃

′
j, ε
′
j)]) (19)

Realized year-to-year growth gj,t, in turn, is given by:

gj,t =
cj,t
cj,t−1

= (s̃j)[1 + rj(k̃j,t, εj,t)] (20)

Equations (15)-(20) illustrate how the model captures the cyclone-growth impact mechanisms

described in Section 2. As these results are qualitatively standard, we relegate their formal

illustration to the Online Appendix, and only summarize the key points here. First, if households

are suffi ciently risk averse, an increase in cyclone risk may increase the equilibrium savings rate

(17), thus increasing long-run growth (19), ceteris paribus. Second, if human and physical capital

have different vulnerability to storms (ηhj (εj,t) 6= ηkj (εj,t)), an increase in cyclone risk may change

the household’s optimal portfolio allocation k̃j (defined by (18)). In particular, if physical capital

is more susceptible to storms, higher cyclone risk may induce households to invest relatively more

in human capital. Third, higher storm risk increases average depreciation and lowers TFP, thus

decreasing average returns and hence long-term growth (19), ceteris paribus. In sum, an increase

in cyclone risk thus has a theoretically ambiguous impact on average growth, whereas a cyclone

strike unambiguously reduces realized returns (15) and thus year-to-year growth (20), in line

with the empirical evidence. Finally, the model also captures the empirical stylized facts that

cyclone strike impacts persistently decrease output levels.

In sum, our parsimonious model thus arguably matches several of the empirical literature’s

key findings. Of course it also has some shortcomings that should be noted. Human capital

accumulation does not induce a positive growth externality à la Lucas (1988), so that the benefits

of increased human capital may be understated. More broadly, endogenous growth models

differ in the underlying source of growth. The present framework features constant returns to

scale in reproducible factors. This class of models is standard in modern stochastic growth

models, including in many analyses of disasters and growth (e.g., Pindyck and Wang, 2013;

Bretschger and Vinogradova, 2016), quantitative models of human capital risk over the business

cycle (e.g., Krebs, 2003ab, 2015) and also leading advancements in stochastic climate-economy

modeling (e.g., van den Bremer and van der Ploeg, 2018). At the same time, this structure

has known shortcomings in matching certain moments such as on cross-country convergence

(Mankiw, Romer, Weil, 1994). While alternative models may thus better explain advancements

in international technology frontiers and the growth of mature economies, for capturing the

marginal effects of cyclone risk changes on growth, we argue that our model provides a natural
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starting point firmly in line with related literature. We also note that the core contribution of

this paper lies in its joint empirical-structural approach to climate change impact estimation,

which can readily be extended to other types of models. Indeed, Section 6 integrates our damage

functions into the seminal DICE model, a Ramsey growth framework (Nordhaus, e.g., 2010a).

5.0.2 Quantification

We quantify the model for each country using a combination of data, estimation, matching of

moments, and external calibration. Table 6 summarizes the calibration strategy. Initial capital

stock levels (K0,j) are taken directly from the data (Penn World Tables), with a model base

year (indexed by 0) of 2014. Human capital stocks are backed out via H0,j =
K0,j

k̃0,j
after solving

for initial asset allocation ratios (k̃0,j) as described below. We obtain estimates of the currently

insured fraction of disaster damages from MunichRe’s NatCatService, which range from 55% in

high income countries to only 3.3% in low income countries.24 ,25 Cyclone risk pdfs ( fj(ε|Tτ ))
and damage functions (ηkj (ε), η

h
j (ε), η

A
j (ε)) are as estimated in Sections 4 and 3, respectively.

Baseline (i.e., non-cyclone) depreciation rates (δk, δh) are calibrated at standard rates from the

literature, as are the capital share (α), utility discount factor (β), and coeffi cient of relative risk

aversion (CRR, γ). Finally, our calibration then matches observed base year GDP per capita

growth g0,j (from Penn World Tables) at base year cyclone realizations ε0,j (from IBTrACS) in

each country by solving jointly for initial productivity level A0,j, savings-out-of-wealth rates s̃0,j,

and asset allocation ratios k̃0,j via (17), (18), and (20).26

We first consider the ceteris paribus effect of changing cyclone risks in today’s economy, with

insurance rates and damage functions evaluated at current covariate levels. Welfare changes are

measured as percent change in stationary equilibrium welfare under the current versus future

climate. Figures 4 and 5 present the results for projected welfare and growth impacts, respectively

(dark bars). The results reveal significant heterogeneity in the projected effects of climate-induced

cyclone risk changes across countries, ranging from substantial negative impacts in vulnerable

small island states (e.g., a -6% welfare change in St. Vincent and the Grenadines) to small

welfare gains in countries where cyclone risks are predicted to decline with global warming.

The predicted growth impacts mirror this heterogeneity, but are generally smaller in magnitude.

24 In upper middle income countries, the fraction is 11.7%, and in lower middle income countries, 5.2%. Income
groupings are based on 2017 gross national income per capita as per World Bank classification.

25 Deryugina (2017) shows that general fiscal transfers constitute an important source of implicit disaster
insurance in the U.S., suggesting that our base insurance measure may be an underestimate in similar
countries. We consider higher insurance rates based on future income adjustments, as described below.

26 At this step we drop six countries from the sample that experienced negative growth in 2014, in some cases
severely so due to warfare or other non-modeled crises (e.g., Yemen, Venezuela). Seeking to match their
growth rates yields problematic calibration results, such as savings-out-of-wealth ratios in excess of unity.
The other dropped countries are Oman, St. Lucia, The Bahamas, and the British Virgin Islands.
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Table 6: Model Calibration
Country-Specific from Data, Estimation, Matched Moments
Item Description Source or Value
K0,j Capital stock PWT Data
πj Insured fraction MunichRe NatCatService

H0,j Human capital Back out via H0,j =
K0,j

k̃0,j
given investment ratio k̃0,j

fj(ε|T τ ) Cyclone risk pdf Estimated from IBTrACS cyclone records, Emanuel et
al. (2008) synthetic tracks, see Section 4

ηkj (ε), η
h
j (ε) Damage Estimated from global macro panel, damage data; see

ηAj (ε) functions Section 3

A0,j TFP Match initial GDP growth (PWT) given s̃0,j, k̃0,j
s̃0,j Savings/wealth Model

k̃0,j Investment ratio Model
Globally Standard from Literature
α Capital share 0.33
δk Baseline depr. 10%/yr
δh Baseline depr. 10%/yr
γ Risk Aversion 2
β Utility discount 0.975

Another striking result is that the United States stands out among the ‘top 10’of most negatively

impacted countries, which are otherwise mostly poor and/or small island states. This result is

in line with empirical evidence that the United States appears uniquely vulnerable to hurricanes

given its levels of income and exposure (see, e.g., Bakkensen and Mendelsohn, 2016).

We next consider the combination of future cyclone and vulnerability changes by evaluating

damage coeffi cients at projected future (2095-2105) levels of GDP and the population share

living below five meters elevation, respectively,27 and allowing insurance rates to increase along

with projected economic development.28 The results are also displayed in Figures 3 and 4 (light

grey bars). We find that reductions in future cyclone vulnerability due to continued economic

development may vastly mitigate the potential losses from future cyclone risk increases. Indeed,

there are a number of cases where the ceteris paribus welfare impacts of cyclone risk increases

may be substantial and negative, but where the combined effect of future changes in cyclone risk

and vulnerability is predicted to be positive (e.g., Comoros, Belize, Haiti, Mozambique, etc.).

That is, in a ‘horse race’, the protective effects of economic and insurance market development are

predicted to outweigh cyclone risk increases in several countries. Of course we must caution that

27 GDP projections are based on regionally differentiated business-as-usual per capita GDP growth projections
from the RICE model (Nordhaus, 2011), applied to each country’s GDP per capita levels in 2015. Low
elevation population projections to 2100 are from CIESIN (2013).

28 We assume that the relationship between incomes and insurance remains as currently observed in MunichRe
data, and assign 2095 insurance rates based on countries’projected future incomes.
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there are further sources of future vulnerability change that are not included in our model, such

as learning from increased cyclone exposure conditional on income (which would decrease future

vulnerability, ceteris paribus, see, e.g., Schumacher and Strobl, 2011; Hsiang and Narita, 2012;

and Fried, 2019), or sea level rise (which will increase future vulnerability to storms conditional

on intensity, ceteris paribus).

We present additional model results for a number of alternative specifications in the Online

Appendix, including for 5-year TFP impacts, three alternative climate models (MIROC, CNRM,

and ECHAM), and for the MunichRe data-based capital depreciation function. As expected,

the cumulative TFP impacts specification generally implies higher welfare losses associated with

cyclone risk increases. For example, Haiti’s predicted welfare impacts of ceteris paribus cyclone

risk changes increase from -0.56% in the benchmark to -1.84% in this specification. At the same

time, cumulative TFP impacts can also increase the welfare gains associated with cyclone risk

declines. For example, Japan’s welfare impacts of ceteris paribus cyclone risk changes increase

from +0.024% to +0.12%. For the other sensitivity runs, we find that the model predictions have

mixed sensitivity to these changes. In some countries, there are qualitative differences across

climate models. For example, in Bangladesh, while the benchmark model implies a cyclone risk

decline, other climate models predict increases in cyclone risk with global warming, and associated

negative welfare impacts. Conversely, in the Dominican Republic, the MIROC climate model

predicts a cyclone risk decrease implying a welfare gain, whereas our benchmark scenario implies

a cyclone risk increase and corresponding welfare loss. Similarly, the MunichRe-based damage

function increases the projected welfare costs of cyclone risk changes in, e.g., the United States

(from -0.25% to -0.31%) , but also increases welfare gains in countries predicted to experience

cyclone risk declines, such as Japan (from +0.024% to +0.033%). In other cases, the results

appear similar. We address the overall sensitivity of the results to these variations through an

analogous sensitivity check in the DICE model extension. While individual country predictions

may vary, we find that the aggregate costs of climate-induced cyclone risk changes appear broadly

robust to these model variations, as shown in the next section.
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6 DICE Model Integration

In order to gauge the aggregate implications of cyclone risk changes for global climate policy, this

section concludes by presenting an integration of our damage functions into the seminal DICE

climate-economy model (Nordhaus, e.g., 1992, 2011). DICE serves as a central benchmark across

the literature, and is one of three frameworks used by the U.S. government to value the social

cost of carbon (Greenstone, Kopits, and Wolverton, 2013).

The DICE model is deterministic and specifies climate change impacts as output-equivalent

loss D(Tτ ) as a function of the mean global atmospheric temperature change Tτ in decade τ .

The first step in mapping our estimates into DICE is thus to compute expected annual capital

depreciation, fatalities, and TFP losses under different climates for each country. Specifically,

we use our estimates for damage function (8) and cyclone pdfs for each country to compute:

Ej[η
k
j,t(ε)|Tτ ] =

∫ ∞
0

δhj,t(ε) · fj(ε|Tτ )dε (21)

Ej[η
h
j,t(ε)|Tτ ] =

∫ ∞
0

δhj,t(ε) · fj(ε|Tτ )dε

For TFP impacts, we focus on the cumulative damage specification ηA(εj,t, ...εj,t−4) = β̂A1 εj,t +

β̂A2 εj,t−1 + ... + β̂A5 εj,t−4 as our aggregate effects ultimately appear to be quite modest. Assum-

ing independence in year-to-year cyclone fluctuations, expected annual cyclone TFP impacts in

country j can then be estimated through an analogous specification to (21). As a second step, we

then aggregate expected impacts across countries, using global GDP shares as weights for TFP

impacts, global capital shares as weights for physical depreciation impacts, and populations as

weights for fatality impacts. Table 8 presents the resulting estimates of global aggregate expected

annual cyclone impacts under the current and future climate, respectively.

These results reveal the following insights. First, global heterogeneity in projected cyclone

risk changes across countries nets out to an increase in aggregate expected damages. For example,

annual expected global TFP losses due to cyclones are projected to increase by around 14% (from

0.0288% to 0.0329%). With fixed damage functions, capital depreciation is moreover predicted

to increase by around 75%; for fatalities, the relevant figure is 5-11%. Second, while the levels of

estimated losses may appear small, their magnitude is broadly in line with historical data. While

cyclones can be locally extremely destructive, their impacts are limited both geographically and

physically, especially as a fraction of global capital stocks and populations.
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Table 8: Global Aggregate Annual Expected Cyclone Depreciation (%/year)
Current Climate Future Climate (T2090)

TFP (DICE) 0.0288% .0329%

Physical Capital
Damage Fn. Coeffi cients:
Country-Fixed; U.S. sep. .0062% .0109%
Current GDP, Pop<5m; U.S. sep. .0062% .0112%
Future GDP, Pop<5m; U.S. sep. .0042% .0087%
Future GDP, Pop<5m .0018% .0016%
Historical Data:
Avg. (1970-2014) .0091%
Year 2014 .0050%

Fatalities
Damage Fn. Coeffi cients:
Country-Fixed .000040% .000042%
Current GDP, Pop<5m .000035% .000039%
Future GDP, Pop<5m .000004% .000005%
Historical Data:
Avg. (1970-2015) .000422%
Year 2014 .000008%

For example, even the $108 billion in damages caused by Hurricane Katrina - the costliest storm

in U.S. history - accounted for only 0.24% of the U.S. capital stock at the time, ($44.4 trillion,

$2011), or 0.042% of the global capital stock. A third result to emerge from Table 8 is the critical

importance of U.S. cyclone damages for the global aggregate. For example, if we project future

damages assuming that the United States will maintain its separate damage function (based on

Column 2 of Table 5), global capital losses are estimated to be 0.0087% per year. If, instead,

we assume that the United States will follow other countries’pattern of decreasing vulnerability

with further economic development (based on Column 4 of Table 5), projected global capital

losses are only 0.0016%. That is, limited adaptation to cyclones in the U.S. could increase global

damages by more than a factor of five. These results thus highlight the importance of ongoing

research illuminating distinct U.S. cyclone damage patterns (e.g., Nordhaus, 2010b; Conte and

Kelly, 2016; Bakkensen and Mendelsohn, 2016; Fried, 2019).

The next step in the DICE model integration is to convert our estimates into climate damage

functions, which ought to reflect only the additional impacts due to warming Tτ in decade τ .

The benchmark DICE model aggregates climate impacts into an output-equivalent loss D(Tτ ).

That is, available (net of damages) output in DICE differs from (3) via:

Y DICE
τ = (1−D(Tτ ))A

DICE
j,t KαD

j,t (LPopj,t )1−αD
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We add three cyclone-specific damage functions into DICE. First, we integrate cyclone-induced

capital depreciation explicitly into the model’s law of motion for capital by making the depreci-

ation rate a function of the climate δ(Tτ ) (and where Iτ denotes investment):

Kτ+1 = Kτ (1− δ(Tτ )) + Iτ

Second, for fatality impacts, we introduce an effective labor parameter ZH(Tτ ) designed to

capture the cumulative loss in the effective work force due to climate change up until time τ

with Tτ ≡ {Tτ , Tτ−1, ...T0}.29 Third, for TFP impacts, we also specify an effective (i.e., net of
cyclone damages) decadal productivity term ZA(Tτ ). The aggregate (net) production function

in our extended DICE model is thus given by:

Y DICE+Cyclones
τ = ZA(Tτ ) · (1−D(Tτ ))A

DICE
j,t KαD

j,t [LPopj,t · ZH(Tτ )]1−αD (22)

Given that natural scientists generally project the global cyclone intensity-temperature relation-

ship to be linear (Holland and Bruyere, 2014), and adopting NOAA’s assessment that anthro-

pogenic warming between pre-industrial and current times has not yet altered tropical cyclone

patterns (GFDL, 2018), we extrapolate linearly to convert the results of Table 8 into the following

damage function parameterizations (see Online Appendix for details). First, letting δ denote the

benchmark annual depreciation rate assumed in DICE, and adding in annual expected cyclone

damages, the decadal depreciation rate becomes:

δ(Tτ ) = 1− [(1− δ − α̂kTτ )10] (23)

The effective work force term ZH(Tτ ) is similarly given by:

ZH(Tτ ) =

τ∏
j=0

(1− α̂hTτ−j)10 (24)

Intuitively, (24) equals one minus cumulative cyclone deaths through decade τ . Finally, the

effective TFP term is given by:

ZA(Tτ ) = 1− [(1− α̂ATτ )10] (25)

Each damage function specification in Table 8 implies different coeffi cient values for α̂k and α̂h.

Given that our social cost of carbon (SCC) impact estimates are generally modest, we focus on

29 We choose this specification in lieu of explicit population losses as the DICE model’s welfare weighting of
future generations depend on their population size. It is standard for IAMs to value mortality without
changing the assumed population in the model.
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the largest α̂ values which assume no future decreases in cyclone vulnerability. For sensitivity,

we also present estimates for damage functions based on the MunichRe loss data (specifically

for the fixed effects and U.S. depreciation specifications in Columns 1 and 2 of Table 6) and

two alternative climate models, MIROC and CNRM (see Online Appendix for extended Table 8

including these models). Table 9 presents the results of incorporating damage functions (23)-(25)

into the 2010 DICE model, specifically the percentage increase in the (optimal) social cost of

carbon in 2015 (∆SCC2015), and on average over the 21st century (∆SCC2015−2115).

Table 9: Cyclone Impacts on the Social Cost of Carbon

Impacts Case α̂A α̂h α̂k ∆SCC2015 ∆SCC2015−2115

Benchmark .0000173 1.60e−08 .0000212 +0.9% +0.7%

MIROC Climate Model .0000281 4.50e−08 .0000067 +1.2% +1.0%

CNRM Climate Model .0000101 3.38e−08 .0000049 +0.5% +0.4%

MunichRe Damages .0000173 1.60e−08 .0000373 +1.0% +0.9%

In the aggregate, we find only modest increases in the optimal global social cost of carbon after

integrating our estimated damage functions into DICE. Though perhaps surprising from the

perspective of the United States, where cyclone damages are among the world’s largest and

projected to increases significantly with global warming, this result is less surprising in light of

the substantial heterogeneity in expected cyclone-warming impacts around the world (see Figure

2). In addition, regional cyclone impacts are modest relative to the global economy. Nonetheless,

there are reasons to suspect that our estimates may understate the true SCC impact of tropical

cyclone changes. First, as DICE is deterministic, the welfare costs of uninsurable risk changes

and behavioral responses thereto are not accounted for. Second, our estimates exclude some

cyclone-vulnerable countries due to data limitations, and may of course be generally attenuated

due to measurement error. Third, our estimates also do not account for potential future cyclone

vulnerability increases due to sea level rise. At the same time, they also do not account for some

mechanisms that may decrease future vulnerability, such as learning-based adaptation conditional

on income, or technological innovations. Ceteris paribus, these omissions would be expected to

bias our SCC estimates upwards. As a growing empirical literature continues to explore these

issues, it would be a rich area for future work to build on the frameworks presented in this paper

to integrate new empirical evidence into structural environment-economy models.

7 Conclusion

This paper proposes a novel empirical-structural approach to analyze the macroeconomic conse-

quences of climate change with a focus on tropical cyclones. We first empirically and conceptually
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review competing approaches to quantifying cyclone impacts on growth. We highlight that dif-

ferences in reduced-form findings, driven in part by empirical choices, are maintained using a

comprehensive dataset yet can also be reconciled through a theoretical lens. Importantly, theory

also tells us that even perfectly identified reduced-form regressions of growth on cyclone shocks

or risk may not be individually suffi cient to characterize the welfare effects of future changes in

cyclone risks given broader general equilibrium changes.

Second, we present our approach to estimating and modeling cyclone impacts designed to

combine empirical evidence with the structure of a model to deliver welfare cost estimates and

policy implications. We propose that empirical research focus on quantifying cyclone impacts

on the structural determinants of growth, and not just growth itself, as the latter is typically

endogenous in macroeconomic climate-economymodels. We then present a stochastic endogenous

growth cyclone-climate-economy model that we quantify separately for 40 cyclone-vulnerable

nations. Important for policy, we find significant heterogeneity of projected climate change

impacts, ranging from substantial negative effects in vulnerable small island states, to small

welfare gains in countries where cyclone risks are predicted to decline with global warming. The

United States stands out among the most negatively impacted countries.

Third, in order to assess the global climate policy implications of changing cyclone risks, we

integrate our cyclone impact estimates into the seminal DICE model and assess their impact

on the social cost of carbon. More broadly, our approach highlights opportunities to reduce

the "micro-macro" gap between growing empirical evidence on macroeconomic impacts and the

quantification climate-economy models. We show that only minor extensions of existing empirical

approaches yield structurally interpretable impact estimates. We also demonstrate how modify-

ing climate-economy model structure to make weather explicit permits (i) direct incorporation

of plausibly causally identified impact estimates, (ii) accounting for macroeconomic adaptation

through endogenous adjustments in savings and investments, and (iii) computing welfare costs of

changes in climatic risks. As frontier advancements in stochastic climate-economy models are now

able to account for multiple sources of uncertainty at high frequency (Cai and Lontzek, 2019),

extending a truly integrated assessment models to explicit consideration of weather impacts may

thus be an interesting area for future work and facilitate linkages to the empirical literature.

Similarly, while our quantitative results are subject to numerous limitations ranging from our

abstractions of advancements in wind-field modeling (Strobl, 2011; Hsiang and Narita, 2012) to

distinguishing productive and adaptation capital (e.g., Fried, 2019), our proposed method seeks

to complement these empirical and modeling advancements so as to facilitate the integration of

both frontiers and to improve our understanding of the social costs of climate change.
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