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Abstract

We address the estimation of linear regression models with a misclassi-
fied binary regressor that is potentially correlated with the other regressors.
We show this correlation creates a bias that has been overlooked by existing
solutions. This bias arises because the misclassification error is necessarily
correlated with the other regressors in the model if the misclassified binary
regressor is. It has not shown up in earlier work because it has assumed
(explicitly or implicitly) that the misclassified binary variable is orthogonal
to other regressors in the model. We show that this ‘hidden’ bias can be
substantial and could result in existing estimators taking the wrong sign.
We propose two classes of corrections: (i) a bias-adjusted least squares esti-
mator (BALS) that either takes misclassification probabilities as given (e.g.
through validation studies) or estimates these probabilities as a first step
when a distribution for the true binary regressor is assumed; (ii) parame-
ter bounds that are identified under relatively weak conditions, and do not
require any of the above information or assumptions. We prove the con-
sistency and asymptotic normality of the proposed estimators. The finite
sample performances of the proposed methods are provided through Monte
Carlo simulations, and are compared with existing methods to demonstrate
superiority. An empirical application on the effect of food stamp partici-
pation on obesity is provided to illustrate the usefulness of the proposed
methods in practice.
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1 Introduction

The use of regression models with one or more binary regressors of interest is com-
mon in applied research. A common example is the evaluation of treatment ef-
fects. It is well-known that in these models, when the binary regressor is measured
with error (i.e. misclassified), the ordinary least squares estimation is inconsistent.
However, most of the literature focused on addressing this issue in the simple linear
regression setting has had no additional covariates, with the (implicit) assumption
that the results would hold in the general case. In the multivariate setting, the is-
sue has been treated almost exclusively with the assumption that the measurement
error in the binary regressor is uncorrelated with the other regressors in the model
(e.g., Aigner 1973, Bollinger 1996, Card 1996, Kane, Rouse & Staiger 1999, Black,
Berger & Scott 2000). In this paper, we show that in a multivariate regression
model this assumption is not innocuous. Any correlation between the misclassified
binary regressor and other regressors in the model creates an additional bias that
is not corrected by existing estimators. This is because, as we show, any control
variable that is correlated with the misclassified binary regressor is necessarily also
correlated with the misclassification error and hence with the disturbance term in
the operational model, even if this control variable is exogenous in the true (unob-
served) model. Since this type of correlation is likely to be common in the data, the
associated bias is likely to be frequent in empirical studies. We show that failure
to account for this hidden bias can result in severe inconsistencies in parameter
estimation including the estimates possibly taking the opposite signs from the true
effects.

Many solutions to identify and estimate the parameters of regression models
with misclassified binary regressors have been proposed in the literature. A group
of papers provide estimators for the model assuming availability of the misclassi-
fication probabilities through validation data or other sources (e.g., Aigner 1973,
Freeman 1984, Card 1996, Savoca 2000, Battistin, Nadai & Sianesi 2014). Another
group of papers provide solutions based on instrumental variables or repeated mea-
surements (e.g., Kane et al. 1999, Black et al. 2000, Frazis & Loewenstein 2003,
Mahajan 2006, Hu 2008, Hu & Shennach 2008, Battistin et al. 2014, DiTraglia &
Garćıa-Jimeno 2019). All these studies assume no correlation between the auxil-
iary regressors (or controls) and the misclassification error in the binary regressor
of interest. These methods thus correct for the misclassification bias, but may not
correct for the bias stemming from a possible correlation between misclassification
error and other regressors in the model (what we term the “hidden bias”). Other
works provide parameter bounds when additional information about misclassifica-
tion probabilities or extraneous information are not available (e.g., Klepper 1988,
Bollinger 1996, Kreider & Pepper 2007, Kreider 2010, Kreider, Pepper, Gunder-
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sen & Jolliffe 2012, van Hasselt & Bollinger 2012, Bollinger & van Hasselt 2017).
More recently, Nguimkeu, Denteh & Tchernis (2019) analyzed the bias in both
ordinary least squares (OLS) and instrumental variable (IV) estimators when the
measurement error is endogenous and depends on one or more covariates. They
proposed a two-step consistent estimator; however, their method only corrects for
the biases when the misclassification error is unidirectional.

In this paper, we propose two classes of corrections. The first builds from
Aigner (1973)’s method and proposes a bias-adjusted least squares estimator (BALS)
that takes misclassification probabilities as given. It expresses the correlation be-
tween misclassification error and control variables as a function of quantities that
can be obtained through sample statistics, and uses it to correct for the bias in the
least squares estimator. The modified least squares estimator (MLS) developed
by Aigner (1973) is a special case of our estimator when both the misclassified bi-
nary regressor and the associated measurement error are uncorrelated with other
regressors in the model. This type of estimator is often motivated by the presence
of misclassification probabilities that can generally be obtained through validation
data (e.g., Aigner 1973, Freeman 1984, Card 1996, Savoca 2000, Battistin et al.
2014, Courtemanche, Denteh & Tchernis 2019). When these probabilities are
not directly available, we exploit the maximum likelihood estimator of Hausman,
Abrevaya & Scott-Morton (1998) to derive the misclassification probabilities, and
then use them in our BALS formula. The BALS estimates of the parameters of the
outcome model with this modification are also consistent if the distribution for the
true binary regressor is correctly assumed. The second approach that we propose
extends the procedure in van Hasselt & Bollinger (2012) to multivariate models
and provides bounds for the model parameters that are identified under relatively
weak conditions, without assuming knowledge of the misclassification probabilities
or of the distribution of the true binary regressor. We prove the

√
n-consistency

and asymptotic normality of the proposed estimators. Monte Carlo simulations re-
sults are provided to show the finite sample performance of our proposed methods
under various misclassification rates in the binary regressor and to demonstrate
their superiority over existing methods. The proposed procedures are applied to
real data to estimate the effect of food stamp participation on body mass index.

Our contribution is threefold. First, we believe the proposed BALS estimator
is the first to provide consistent point estimates of a multivariate linear regression
model with a mismeasured binary regressor that is correlated with other regres-
sors, when misclassification rates are available. Second, when these rates are not
available and the distribution of the true binary regressor is correctly assumed, our
two-step estimator is a useful alternative to existing ones such as Brachet (2008)
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and Almada, McCarthy & Tchernis (2016). Third, we provide new parametric
bounds that are tighter than the Bollinger (1996)’s bounds and can be used when
there is scant or no knowledge of the misclassification rates or their distribution.
The paper proceeds as follows. In Section 2, we reanalyze the properties of the
OLS and MLS estimators in a multivariate linear regression model with a misclas-
sified binary regressor, paying a particular attention to the potential correlation
between the misclassification error and the control variables. In Section 3, we
develop a bias-adjusted least squares (BALS) estimator, its two-step version, and
the parameter bounds. We also establish their large sample properties, includ-
ing their consistency and asymptotic normality. Section 4 provides Monte Carlo
simulations. Section 5 illustrates the proposed methods in an empirical example.
Section 6 summarizes our findings. Mathematical proofs are in the appendix.

2 Framework

We consider a multiple linear regression model, for observation i in a random
sample of size n, given by

Yi = c+ βD∗i +X ′iγ + εi, E[εi|Xi, D
∗
i ] = 0, (1)

where Yi is the scalar outcome variable, Xi is a k × 1 vector of correctly mea-
sured regressors, D∗i ∈ {0, 1} is a binary regressor (or dummy variable) with
Pr[D∗i = 1] = P ∗, and P ∗ ∈ (0, 1). The error term εi is assumed mean zero and
uncorrelated with Xi and D∗i . The purpose is to estimate the model parameters
c, β and γ.

In the treatment effect literature, D∗i is the treatment status or program partic-
ipation status, Xi is the vector of control variables, and β captures the treatment
effect, which is of great interest for program evaluation (for a review, see, e.g.,
Abadie & Cattaneo 2018). The econometrician does not observe the true status
D∗i but a potentially misclassified binary surrogate Di. Specifically, instead of
observing D∗i , we observe Di such that

Di = D∗i + Ui (2)

where Ui denotes a measurement error, independent of εi, with Ui ∈ {−1, 0, 1},
and Pr[Di = 1] = P , with P ∈ (0, 1). Because D∗i is binary, it is necessarily corre-
lated (negatively) with the measurement error, Ui. Hence, the measurement error
in the observed binary variable Di is nonclassical. Since the true participation sta-
tus, D∗i , is unobserved and only the surrogate Di is observed, the equivalent model
with reported participation status estimated by the researcher, usually referred to
as the operational model, is given by

3



Yi = c+ βDi +X ′iγ + (εi − βUi). (3)

The nonclassical nature of the measurement error in Di makes estimation of the
model parameters difficult.

Regression models with a misclassified binary regressor such as (1)-(3) have
been studied in many papers. The first was Aigner (1973) who showed not only
that the ordinary least squares (OLS) estimator for the coefficient, β, of the mis-
classified binary regressor is underestimated, but also that the OLS estimators of
the other coefficients, γ, of the correctly measured independent variables are incon-
sistent as well. Aigner (1973) proposed a modified least squares (MLS) estimator
to consistently estimate the parameters of this model when the misclassification
probabilities are known. Savoca (2000) extends Aigner (1973)’s analysis to the
case when several binary regressors are misclassified. Black et al. (2000) and Kane
et al. (1999) show that when repeated misclassified measurements of the binary
regressor are available, one can obtain consistent estimates of the model using the
generalized method of moments (GMM).

However, the corrections provided by Aigner (1973)’s MLS and other existing
methods are satisfactory only to the extent that the correctly measured covariates
Xi are asymptotically uncorrelated with the true binary regressor D∗i . In fact,
given the exogeneity assumption in the true model, the bias in the coefficients of
the correctly measured regressors has been viewed merely as a contamination from
the bias in the estimated coefficient of the misclassified variable Di. Therefore, the
bias correction strategy in Aigner (1973) and related papers relied exclusively on
accounting for the correlation between the mismeasured variable Di and the er-
ror term (εi − βUi) in the operational model. However, as we show below, if a
misclassified binary regressor D∗i in the linear regression model is correlated with
the correctly measured regressors Xi, then these regressors must also be correlated
with the measurement error Ui, and hence the operational model error (εi− βUi),
even if these variables were initially exogeneous. A more general solution should
not focus only on solving the “endogeneity” of Di in the operational model (3); it
must also consider the “endogeneity” of Xi in this model. Otherwise, only part of
the bias in the coefficients of the misclassified binary regressor as well as in the cor-
rectly measured regressors would be eliminated, except under limited conditions.
This missing link has not been noticed before and as a consequence the findings of
some of the previous works on this issue suffer from a “hidden bias”. We analyze
the effect of this hidden bias on OLS and MLS estimators.

Examples of linear regression models where the binary regressor D∗i and the
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correctly measured regressors Xi are correlated are commonly encountered in em-
pirical studies. In the food stamp and obesity model of Almada et al. (2016), D∗i
is the true food stamp participation status, Di is the self-reported food stamp par-
ticipation, and Xi is a vector of covariates including age, household size, number
of children, mother’s education, employment status, marital status, gender and
race. These covariates are correlated with true participation status as later found
by Courtemanche et al. (2019) using administrative records as true measures of
food stamp participation. In the model of technology adoption and agricultural
productivity estimated by Wossen, Abdoulaye, Alene, Nguimkeu, Feleke, Rabbi,
Haile & Manyong (2019), D∗i is true adoption status of improved cassava varieties
(obtained through DNA-fingerprinting technology) versus landraces, and Di is the
self-reported adoption status by responding farmers. They found that D∗i is signif-
icantly correlated with components of Xi, which included regressors such as age,
education, mobile phone ownership, membership in a cassava growers association,
and whether or not a friend or neighbor is a true adopter. Another popular ex-
ample is in the return to education model such as Kane & Rouse (1995). Here,
the true D∗i is a binary indicator of obtaining a college degree, while Di is the
self-reported indicator of college graduation. The vector of correctly measured
covariates consists of the respondent’s age, gender, race, and family income, all
of which Black, Sanders & Taylor (2003) found to be significantly correlated with
measurement of higher education in the census data. These few examples are far
from being exhaustive, but they illustrate that in many empirical situations the
misclassified binary regressor of interest is likely to be correlated with other re-
gressors of the model, and further justifies the relevance of the issues addressed in
this paper for the empiricist.

We first discuss the estimation of the slope parameters, (β, γ), of the model
before looking at the estimation of the intercept parameter, c, which is rather easy
to derive once the former are obtained.

Assumption 1. Var(Xi) exists and is nonsingular.

This assumption is standard and rules out perfect multicollinearity among the
columns of Xi and the extreme cases where some of the components of Xi may
be following an ill-behave distribution (e.g. distributions with no finite moments).
Under Assumption 1, the probability limit of the ordinary least squares (OLS)
estimator of β and γ from the operational model (3) are given by

plim

[
β̂OLS − β
γ̂OLS − γ

]
= −β

[
Var(Di) Cov(Di, Xi)

Cov(Xi, Di) Var(Xi)

]−1 [
Cov(Di, Ui)
Cov(Xi, Ui)

]
(4)

This result describes the nature of the bias in the OLS estimators when misclas-
sification is present. In particular, the OLS bias has two components: the first
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component is driven by Cov(Di, Ui) which arises directly from the presence of mis-
classification errors, i.e., Cov(Di, Ui) 6= 0. The second component is a little more
subtle and depends on whether Cov(Xi, Ui) is zero or not. As explained earlier,
the existing literature largely assumed that Cov(Xi, Ui) is zero, leaving only the
first component of the bias as the subject of interest. However, as we show below,
in a multiple linear regression model where Cov(D∗i , Xi) 6= 0, we cannot over-
look the second component of the bias because Cov(Xi, Ui) is a direct function
of Cov(Xi, D

∗
i ). To further understand the structure of these relationships, we

impose the following restriction, which is common in many related papers.
We define the probabilities of false positives and false negatives by

Pr[Di = 1|Xi, D
∗
i = 0] = α0 and Pr[Di = 0|Xi, D

∗
i = 1] = α1 (5)

These probabilities are assumed conditionally constant, implying that the misclas-
sification probabilities are uncorrelated with X and ε, conditionally on the true
response. This assumption implies that the measurement error may vary with
the covariates, but only through the true response, and has been made in sev-
eral papers, (e.g., Aigner 1973, Bollinger 1996, Bollinger & David 1997, Kreider &
Pepper 2007, Bollinger & van Hasselt 2017, van Hasselt & Bollinger 2012, Black
et al. 2000, Kane et al. 1999, Hausman et al. 1998).1 Meyer & Mittag (2017) refer
to this condition as the misclassification probabilities being conditionally random.
We maintain this assumption partly because modifying it would require to mod-
ify the standard results with which the proposed estimators are compared, but
also because assuming that misclassification probabilities vary directly with the
regressors brings other important complications that are beyond the scope of this
paper.2 We also make the following assumption which is standard in the literature
and is often referred to as the monotonicity assumption.

Assumption 2. α0 + α1 < 1

This condition is equivalent to Cov(Di, D
∗
i ) > 0, and ensures that in spite of

the presence of misclassification error in the responses, the reported status Di is
still an informative proxy for true status D∗i . If this is not the case, then the
measurement error is so severe that 1−Di would be a better measure of D∗i than
is Di. We have the following result which is key to our subsequent discussions.

Lemma 1. Let Ui be the misclassification error associated with D∗i in the reporting
equation given by (2) and let Xi be any vector of variables. Then

Cov(Xi, Ui) = − (α0 + α1) Cov(Xi, D
∗
i ). (6)

1A simple example could be the case where the reported treatment is defined by Di = D∗i +Ui,
with Ui = a0 − (a0 + a1)D∗i , where aj = 1[ui < αj ], j ∈ {0, 1}, and u ∼ U(0, 1).

2This includes, for instance, dimensionality issues in identifying the misclassification proba-
bilities at the individual level.
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This result establishes the relationship between Cov(Xi, D
∗
i ) and Cov(Xi, Ui)

and shows that the second quantity is always nonzero if the first quantity is. We
note that when there is no misclassification error (i.e., α0 = α1 = 0) we have
Cov(D∗i , Ui) = 0 so that the OLS estimator is unbiased and consistent.

Corollary 1. Consider the linear regression model (1) subject to nonclassical mea-
surement error defined by Equation (2). If Cov(Xi, D

∗
i ) 6= 0, then Cov(Xi, εi −

βUi)) 6= 0, ∀Xi.

This results says that if the true binary regressor is correlated with the correctly
measured control variables in a multiple linear regression model, then both the
reported binary regressor and the correctly measured controls are endogenous in
the operational model given by Equation (3), even if they are exogenous in the
true (unobserved) model given by Equation (1). This result follows directly from
Lemma 1. Since this result holds in general, including for arbitrary variables that
are not necessarily part of the model, it also provides an important insight for
why linear instrumental variable estimation methods can not correct for the bias
generated by misclassification. Any instrument variable Z that is correlated with
the misclassified regressor D∗i (i.e. Z is relevant) would, by virtue of Corollary
1, be also systematically correlated with the disturbance term in the operational
model (i.e. Z cannot be exogenous), and hence would be an invalid instrument for
the IV method.

3 Correcting the Bias of the OLS Estimator

We propose three types of estimators that correct for the OLS bias. The first
assumes knowledge of misclassification probabilities from outside information, the
second estimates these probabilities given the sample observations and a distribu-
tion for the true binary regressor, and the third estimates the model parameter
bounds without such knowledge or assumptions.

3.1 The Bias-Adjusted Least Squares Estimator

The results given by Equations (4) suggest that with consistent estimators for
Cov(Di, Ui) and Cov(Xi, Ui) we can readily correct for the OLS biases by inverting
the terms on the right hand side of these equations around β and γ. The next
lemma, which follows from Lemma 1 above and Equation (3c) of Aigner (1973),
shows that these two components, indeed, can be expressed in terms of observables
under the assumptions stated above.
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Lemma 2. Under Assumptions 1 and 2,

Cov(Di, Ui) = ζVar(Di) and Cov(Xi, Ui) = −θCov(Xi, Di) (7)

where θ =
α0 + α1

1− α0 − α1

and ζ = 1− (P − α0)(1− α1 − P )

(1− α0 − α1)(1− P )P

This result shows that the two components Cov(Xi, Ui) and Cov(Di, Ui) driving
the OLS asymptotic bias given by Equations (4) can be estimated using sample
statistics if misclassification probabilities α0 and α1 are known. The remaining
components of this asymptotic bias can as usual be estimated using sample statis-
tics. We summarize that in the following theorem.

Theorem 1. Under Assumptions 1-2, the asymptotic biases of the OLS estimators
of β and γ are given by

plim

[
β̂OLS − β
γ̂OLS − γ

]
= β

[
Var(Di) Cov(Di, Xi)

Cov(Xi, Di) Var(Xi)

]−1 [ −ζVar(Di)
θCov(Xi, Di)

]
(8)

where ζ and θ dependent on α0, α1 as given in Lemma 2.

Equations 8 summarizes the structure of the biases in the OLS estimation of
Model (3) under the above assumptions. When Cov(Di, Xi) = 0 or if there are no

auxiliary covariates in the model, then γ̂OLS is consistent for γ, but plim β̂OLS =

β

(
1− Cov(Di, Ui)

Var(Di)

)
= β(1−ζ) as obtained by Aigner (1973). Given knowledge of

ζ, Aigner (1973) then proposed a modified least squares estimator (MLS) to correct
for the OLS bias which consists in dividing the OLS estimator by the proportionate
bias. If, however, Cov(Di, Xi) 6= 0 as would be the case if Cov(D∗i , Xi) 6= 0, then
both the OLS and the MLS estimators of β and γ would be inconsistent due to the
terms that involve θ in the right hand side of Equations 8. These terms generate a
bias that has been largely overlooked in the literature, and we therefore refer to it
as the hidden bias. Interestingly, this component does not induce only a downward
(or attenuation bias) for the OLS, but could lead to a sign-reversal bias for both
OLS and MLS. This is particularly obvious for the estimation of γ. To see this,
suppose that β is positive, and notice that we can write

plim γ̂OLS = γ + β (θ + ζ) ∆−1Cov(Xi, Di) (9)

and plim γ̂MLS = γ + βζ∆−1Cov(Xi, Di)

with ∆ = Var(Xi)−Cov(Xi, Di)Var(Di)
−1Cov(Di, Xi). Then for sufficiently high

levels of misreporting and positive correlation between Xi and D∗i , plim γ̂OLS could
be positive, even if γ is negative. As an example, in the return to college model,
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if college graduation is strongly correlated with Female and misreporting is high,
then the OLS and MLS estimates could wrongly conclude that women earn more
than men on average (a contradiction to the well-known wage-gap in labor eco-
nomics). Likewise, in the technology adoption and farm productivity model, if
the true adoption status is strongly correlated with plot size and misreporting of
adoption status is high, then OLS and MLS estimates could wrongly conclude
that marginal increases in plot size increase productivity (a contradiction to the
well-known farm size - productivity inverse relationship in agricultural economics).

The above results can now be used to propose consistent estimators of the
model. Denote by SVW the sample covariance between V and W , that is, SVW =
1

n

∑n
i=1(V − V )(W −W )′, where V and W are the sample means of V and W ,

respectively. We have the following result.

Theorem 2 (Bias Adjusted Least Squares). Let Assumptions 1-2 hold. For given
misclassification probabilities α0 and α1, define the bias-adjusted least squares es-
timators by [

β̂
γ̂

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
SY D
SY X

]
(10)

where ζ and θ depend on α0, α1 as given in Lemma 2. Then:

(i) These estimators are consistent, i.e. β̂
p−→ β and γ̂

p−→ γ.

(ii) If, in addition, E[ε2
i |Xi, D

∗
i ] = σ2, then these estimators are asymptotically

normal, i.e.
√
n

[
β̂ − β
γ̂ − γ

]
d−→N (0, Ω−1ΞΩ−1), where the matrices Ω, and

Ξ are given by Equations (20) and (23) in the appendix.

We term this estimator the bias-adjusted least squares (BALS) estimator. We
think of it as an adjustment of the ordinary least squares estimator because it can
be written as a linear combination of the OLS estimator as follows[

β̂
γ̂

]
=

[
β̂OLS
γ̂OLS

]
+ β̂OLS

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
ζSDD
−θSXD

]
. (11)

On the other hand, the modified least squares estimators can also be written in
terms of the OLS as[

β̂MLS

γ̂MLS

]
=

[
β̂OLS
γ̂OLS

]
+ β̂OLS

[
(1− ζ)SDD SDX

SXD SXX

]−1 [
ζSDD

0

]
. (12)

Put in these forms, it is easy to notice that when there is no measurement error,
that is, if α0 = α1 = 0, then we have θ = 0, ζ = 0, so that BALS, OLS and MLS
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are equal, i.e., β̂ = β̂MLS = β̂OLS and γ̂ = γ̂MLS = γ̂OLS and are all consistent.
When there is misclassification error and X and D∗ are uncorrelated, the pro-
posed estimator, BALS, and Aigner (1973)’s MLS estimator are both consistent
and asymptotically equivalent, but OLS is inconsistent. Finally, when there is
misclassification error and X and D∗ are correlated, only the proposed estimator,
BALS, is consistent while OLS and MLS are inconsistent. Once β and γ have been
consistently estimated, a consistent estimator for the intercept, c, can be obtained
as follows.3

Corollary 2. Under the conditions of Theorem 1, define the bias-adjusted least
squares estimator of the intercept, c, by

ĉ = Y − β̂ D − α0

1− α0 − α1

−X ′γ̂. (13)

Then ĉ is consistent and asymptotically normal, i.e. ĉ
p−→ c and

√
n(ĉ−c) d−→N (0, σ2

c ),
where the asymptotic variance, σ2

c , is given by Equation (28) in the appendix.

Note that the homoscedasticity condition assumed in part (ii) of Theorem 2
is not needed to establish the asymptotic normality of the proposed estimators.
These estimators would still be asymptotically normal even if the variance of the
error terms in the true model has an unknown form. It is only needed to derive
asymptotic variance for these estimators that are practical and usable. These
asymptotic variances (as given in the appendix) can be consistently estimated
by simply plugging in sample information and can be used to perform standard
inference on the regression coefficients. If one assumes heteroskedasticity of a
given form, then one should modify these expressions to account for the desired
error covariance structure. Heteroskedasticity of an unknown form would however
require a more sophisticated device, such as a nonparametric conditional variance
estimation (see, e.g., Ruppert, Wand, Holst & Hossjer 1997, Fan & Yao 1998)

3.2 The Case of Unknown Misclassification Rates

A limitation of the bias-adjusted estimator developed above is the required knowl-
edge of misclassification probabilities α0 and α1. This limitation is shared with all
methods that require upfront knowledge of these probabilities (e.g., Aigner 1973,
Freeman 1984, Card 1996, Savoca 2000, Battistin et al. 2014) A way around it
is to use a two-step process, first estimating the requisite probabilities and then

3Alternatively, the BALS estimator can be estimated including the intercept term directly as[
(1− α1)i′D D′X
(1 + θ)X′D X′X

]−1 [
D′X
X′Y

]
, where D = D − α0i, X = [i X] and i is an n-vector of

1’s. We treat the intercept separately throughout for easy comparison with previous results.
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using them in the BALS formula. With a distribution (or functional form) for the
conditional probability of the true binary regressor, i.e., Pr[D∗ = 1|X], one can
estimate the misclassification probabilities α0 and α1 by maximum likelihood or
nonlinear least squares as proposed by Hausman et al. (1998). Those estimates
can then be used in Equation (10) to obtain feasible versions of the BALS that are
also consistent under correct specification of the binary regressor’s distribution.

The starting point of the first step in this case is a parametric model for the
true binary variable D∗i . It assumes that D∗i follows the model

Pr[D∗i = 1|Xi] = F (X ′iπ), (14)

where F (·) is a known, strictly increasing, cumulative distribution function (CDF)
and π is a vector of parameters. Since Pr[Di = 1|Xi] = α0+(1−α0−α1) Pr[D∗i |Xi],
the model for the reported binary regressor is then given by

Pr[Di = 1|Xi] = α0 + (1− α0 − α1)F (X ′iπ)

The fact the binary regression model and the outcome equation have the same set of
regressors Xi is not especially problematic because of the nonlinearity and the fact
that any factor drivingD∗i that we think belongs to the outcome equation should be
included in Xi as well. However, the specification of the binary choice probability
may account for the possibility of i.i.d. unobserved heterogeneity that are excluded
from the outcome equation. The maximum likelihood (ML) estimators of α0, α1

and π, denoted α̂0, α̂1, π̂ can be obtained by maximizing the likelihood function

L(α0, α1, π) =
1

n

n∑
i

{Di ln (α0 + (1− α0 − α1)F (X ′iπ))

+ (1−Di) ln (1− α0 − (1− α0 − α1)F (X ′iπ))}
(15)

with respect to (α0, α1, π). Hausman et al. (1998) showed that under Assumptions
1- 2 and correct specification of F (·), these estimators are consistent.

Theorem 3 (Bias Adjusted Least Squares: Two-Step). Let the conditions of The-
orem 1 hold, and assume the function F (·) is correctly specified and strictly increas-

ing (i.e. everywhere positive density). Denote by β̃ and γ̃ the estimators derived
from Equations (10) where α0 and α1 are replaced by their estimates α̂0 and α̂1

from the above step. Then

(i) These estimators are consistent, i.e. β̃
p−→ β and γ̃

p−→ γ.

(ii) If, in addition, E[ε2
i |Xi, D

∗
i ] = σ2, then these estimators are asymptotically

normal, i.e.
√
n

[
β̃ − β
γ̃ − γ

]
d−→N (0, Ω−1ΞΩ−1), where the asymptotic vari-

ance components Ω and Ξ are the same as in Theorem 1.
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The two-step estimation of c follows as in Corollary 1, by using the slopes
estimates (β̃, γ̃) and the estimated misclassification probabilities α̂0 and α̂1 ob-
tained from the above steps in Equation (13). The resulting estimator, denoted c̃
is consistent and asymptotically normal, with the same asymptotic variance as ĉ.

As stated above, the consistency of the misclassification probabilities depends
on correct specification of the first-stage equation. If there is doubt about the
functional form chosen to estimate the probability Pr[D∗i = 1|Xi], semiparametric
procedures which do not require distributional assumptions can be used to esti-
mate these probabilities. Some of these methods include the semiparametric ML
of Hausman et al. (1998) based on the maximum rank correlation estimator of Han
(1987), or the maximum score estimator of Manski (1985). The main drawback
of nonparametric or semiparametric methods is that their local nature yields es-
timators of misclassification rates that are slower than

√
n - rate of convergence,

potentially yielding inflated variance or inconsistency for estimators of the param-
eters in the outcome model. Nonetheless, semiparametric approaches can at least
serve as a specification check for the first step estimation.

It is important to note that another two-step estimation procedure for the
model in this framework was advocated by Brachet (2008) while estimating the
relationship between error-ridden maternal smoking status and birthweight. The
first step consisted of using the procedure in Hausman et al. (1998) to estimate
the true probability of smoking (rather than the misclassification probabilities as
we do here), which is then used in the outcome equation in lieu of the true binary
regressor to estimate the model. Almada et al. (2016) used a similar approach in a
panel data setting to estimate the effect of error-ridden food stamp participation
on obesity. In both cases, however, the consistency and asymptotic normality of
their estimators were not formally established.

3.3 Bounding the Parameters of the Model

The above discussions assumed knowledge of either the misclassification probabil-
ities or the distribution of the true binary regressor. A useful alternative to these
approaches is to bound parameter estimates (e.g. Klepper 1988, Bollinger 1996).
For the remainder of the paper, we assume, without any loss of generality, that
β ≥ 0, or equivalently, that Cov(D∗, Y |X) ≥ 0. As a starting point, it is useful to
notice that from our derivations above, we can write:

β = bB(α0, α1)

12



where, for the ease of notation, all estimators are understood in terms of their
probability limit, and we denote b = plim β̂OLS, and

B(α0, α1) =
(1− α0 − α1)P (1− P )(1−R2

DX)

(P − α0)(1− α1 − P )−R2
DXP (1− P )

,

where R2
DX =

Cov(D,X)Var(X)−1Cov(X,D)

Var(D)
is the R-squared of the linear re-

gression of Di on Xi. Since B(α0, α1) is increasing in both α0 and α1, the upper
bound (respectively, the lower bound) for β is attained when α0 and α1 take
their maximum values (respectively, minimum values), given Assumption 2. The
lower bound is obtained when the misclassification probabilities are zero, that is,
B(0, 0) = 1. This implies that the parameter β can be bound as follows

b ≤ β ≤ bB(αu0 , α
u
1) (16)

where αu0 and αu1 are the upper bounds of the misclassification probabilities, which
may sometimes be obtained from outside sources even when the exact misclassi-
fication rates are unavailable or unclear. Then, using Equation (9), the compo-
nents of the parameter vector γ can be bounded between γOLS and γOLS − b(ζu +
θu)B(αu0 , α

u
1)∆−1Cov(Xi, Di), where ζu and θu depend on αu0 , αu1 by the formula

given in Lemma 2, and the lower bound and upper bound of each component
of γ is determined by the sign of each corresponding component in the vector
∆−1Cov(Xi, Di). The bounds of c can then similarly be deduced from the bounds
of β and γ, using Equation (13).

However, if the upper bounds of the misclassification probabilities are not avail-
able, the procedure that we develop below can be used to gain insight about the
desired estimates. In what follows, we propose a method to bound the parame-
ters β, γ and c in the model defined by Equation (1), given the data available.
The bounding method we propose is a generalization of van Hasselt & Bollinger
(2012) to a multiple linear regression setting where the binary regressor is possibly
correlated with control variables. By projecting all the variables of the model,
including the misclassification error, to the column space of the control variables,
we can “partial-out” the effect of these regressors on the binary regressor and the
misclassification error. The residual model is then a simple linear regression model
with a structure similar to the one discussed in van Hasselt & Bollinger (2012).
Hence, the bounds derived by these authors in the simple linear regression model
with a single binary regressor can be modified and applied to the residual model
to bound β, and then γ and c.
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For the ease of the exposition, we denote for any variable Vi, its residual Ṽi =
Vi−L[Vi|Xi], where L[Vi|Xi] is the linear projection of Vi on Xi. Then, taking the
difference between the variables and their linear projections on Xi, we can derive
a residual model for Equation (1) by:

Ỹi = βD̃∗i + εi, E[εi|D̃∗i ] = 0 (17)

We also use the following notations, where, again, all the stated estimators are in
terms of their probability limits. Note that b is the slope of the OLS estimator of
the regression of Ỹi on D̃i, i.e., we can write b = σD̃Ỹ /σ

2
D̃

, where, σD̃Ỹ = Cov(D̃, Ỹ )

and σ2
D̃

= Var(D̃); let ψ = [ψ1, . . . , ψk]
′ and ψ0 denote, respectively, the slope and

intercept of the regression of Yi on Xi i.e., ψ = Var(Xi)
−1Cov(Xi, Yi) and ψ0 =

E[Yi] − E[Xi]
′ψ ; let λ = [λ1, . . . , λk]

′, and λ0 denote, respectively, the slope and
the intercept of the linear regression of Di on Xi, i.e. λ = Var(Xi)

−1Cov(Xi, Di),
and λ0 = E[Di]− E[Xi]

′λ; and let σ2
j = Var[Yi|Xi, Di = j] denote the conditional

variance of Yi given X and Di = j, for j = 0, 1. We have the following results.

Theorem 4. Let Assumptions 1-2 hold. Assume, without loss of generality, that
β > 0, and define the parameters κ0, κ1 and κ by

κ0 = (1− P )
σ2

0

σD̃Ỹ
, κ1 = P

σ2
1

σD̃Ỹ
, and κ = κ01[P > 1/2] + κ11[P ≤ 1/2].

Then:

(i) The parameter β is bounded as follows.

b ≤ β ≤


b+ κ0

[
P + (1− P )R2

DX

]
for P > 1/2

b+ κ1

[
(1− P ) + PR2

DX

]
for P ≤ 1/2

(ii) The components of γ are bounded by the terms ψ−bλ and ψ−(b+κ)λ, where
lower bound and upper bound of each of the components of γ are determined
by the sign of each corresponding component in λ.

(iii) The intercept, c, is bounded between min {ψ0 − bλ0, ψ0 − (b+ κ)λ0} and

max {ψ0 − bλ0, ψ0 − (b+ κ1)λ0 + κ1P (1−R2
DX)} .

(iv) The misclassification probabilities are bounded as follows:

0 ≤ α0 ≤
P 2σ2

1(1−R2
DX)

bσD̃Ỹ + Pσ2
1

; 0 ≤ α1 ≤
(1− P )2σ2

0(1−R2
DX)

bσD̃Ỹ + (1− P )σ2
0

.

These bounds are sharper than the bounds derived in Bollinger (1996). They
can be easily estimated consistently by taking their sample counterparts, and their
asymptotic variances can be computed using the usual delta method so that stan-
dard inference on these bounds can be performed.
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4 Monte Carlo Simulations

We assess the finite sample performance of our estimators through Monte Carlo
simulations, comparing the proposed bias adjusted estimators with the OLS and
the MLS estimators, and the proposed parameter bounds with the Bollinger bounds.
Our goal is to consistently estimate the parameters (c, β, γ′) of the model given
by Equation (1), assuming that true binary response D∗i is unobserved, but a
misclassified surrogate Di and the control variables Xi are observed.

4.1 Simulation setup

The data generating process is simulated as follows. The exogenous covariates

Xi = (X1i, X2i) are generated by X1i = z2
1i and X2i = z2i, where

(
z1i

z2i

)
∼

N
((

1
1

)
,

(
1 0.3

0.3 1

))
. Denote π ∈ {−0.8; 1.2}, and define the true binary

regressor, D∗i , by

D∗i = 1 [π0 + π1X1i + π2X2i − ui ≥ 0] , ui ∼ N (0, 1),

where π0 = −sign(π) (i.e. 1 when π = −0.8, and -1 when π = 1.2), π1 = π,
and π2 = 0.9π. We consider alternative values of the parameter π to examine the
performance of the estimators under varying degrees of the correlation between the
true binary regressor D∗i and the covariates Xi = (X1i, X2i), which translates to a
correlation between misclassification error and covariates as implied by Lemma 1.
The outcome equation Yi is given by

Yi = c+ βD∗i + γ1X1i + γ2X2i + εi where εi ∼ N (0, 2),

and c = 1; β = 4; γ1 = −0.3; γ2 = 0.2. are the true population regression param-
eters we seek to estimate.

The econometrician does not have the above model at hand, but only an op-
erational model defined by

Yi = c+ βDi + γ1X1i + γ2X2i + εi,

where the observed binary regressor Di is an error-ridden one defined by

Di = D∗i 1 (vi > α1) + (1−D∗i )1 (vi < α0) ,

with the disturbance vi ∼ U(0, 1) drawn from a uniform distribution, and the
misclassification probabilities given by α0, α1 ∈ [0, 1) such that α0 + α1 < 1. We
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consider the following set of values for the misclassification probabilities (α0, α1) ∈
{(0, 0.15); (0, 0.30); (0.15, 0.15); (0.15, 0.30); (0.30, 0.15)}. This allows us to as-
sess the performance of the proposed estimators for increasing rates of misclassifi-
cation, under all three possible cases of misclassification errors: one-sided misclas-
sification (α0, α1) ∈ {(0, 0.15); (0, 0.30)}, symmetric misclassification (α0, α1) ∈
{(0.15, 0.15)}, and asymmetric misclassification (α0, α1) ∈ {(0.15, 0.30); (0.3, 0.15)}.

The point-estimates of the model parameters c, β, γ1, γ2 are obtained using our
proposed bias adjusted least square estimator (BALS) which we compare with the
OLS estimator and the modified least squares estimator (MLS). For the OLS we
report both the estimates based on the true (unobserved) binary regressor and
the estimates using the misclassified (observed) binary regressor. The reported
MLS estimates only use known misclassification rates, and the proposed BALS
estimates are reported for both the known misclassification rates (Known α’s) and
the estimated misclassification rates using the Hausman et al. (1998) approach
assuming the true rates are unavailable (Unknown α’s). The lower bounds and
the upper bounds of the model parameters are also reported for c, β, γ1, γ2, as
well as for the misclassification rates α0 and α1, using both the Bollinger (1996)
approach and our proposed approach described in the previous section.

4.2 Simulation Results for Point Estimates

For each of the parameter cases, we executed 1000 replications, each using a sam-
ple size of n = 5000 observations. Table 1 reports Monte Carlo simulation results
for OLS, MLS and the proposed BALS estimators. The OLS estimates based on
the true binary regressor is given in the column denoted ‘True’ as a benchmark,
whereas the column denoted ‘Observed’ gives the naive OLS estimates based on
the observed data. The results show that not only the OLS estimators of β, γ1, γ2

and c are inconsistent as shown in Theorem 1, but the inconsistency of the esti-
mates of γ1 and/or γ2 can sometimes produce wrong signs. Sign-switching in these
estimates especially occurred when false negatives and/or false positives rates are
high (e.g. α1 ≥ 30% or α0 ≥ 15%) and the direction of the correlation between
the covariate and the true binary regressor, π, is opposite from the true covariate
effect, γj, j = 1, 2. The modified least squares estimates are reported in the col-
umn named ‘MLS’. The results show that the MLS estimates are also inconsistent
but usually perform much better than the OLS. As one would expect, the largest
inconsistencies in the MLS estimates come from the covariates coefficients γ1, γ2,
while the inconsistency in β are somewhat moderate.

As discussed in the theory, sign-switching sometimes also occur in the MLS
estimates of γ1 and γ2, especially when, as with the OLS cases, misclassification
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Table 1: Simulations Results for Point Estimates

α0 α1 π Para.
True OLS

MLS
BALS

Values True Observed Known Unknown

0%

15%

-0.8

β 4.0 4.001 2.863 3.731 4.003 4.020
γ1 -0.3 -0.299 -0.539 -0.426 -0.299 -0.296
γ2 0.2 0.200 -0.082 0.051 0.200 0.204
c 1.0 0.999 2.169 – 0.998 0.980

1.2

β 4.0 4.002 3.021 3.653 4.007 4.000
γ1 -0.3 -0.300 -0.079 -0.162 -0.302 -0.300
γ2 0.2 0.200 0.520 0.400 0.199 0.201
c 1.0 0.999 1.468 – 0.998 1.000

30%

-0.8

β 4.0 4.004 2.226 3.495 4.007 4.032
γ1 -0.3 -0.299 -0.674 -0.538 -0.298 -0.293
γ2 0.2 0.201 -0.238 -0.079 0.201 0.206
c 1.0 0.996 2.822 – 0.993 0.966

1.2

β 4.0 4.001 2.424 3.359 4.012 4.013
γ1 -0.3 -0.300 0.058 -0.044 -0.301 -0.301
γ2 0.2 0.199 0.712 0.566 0.195 0.195
c 1.0 0.997 1.750 – 0.992 0.990

15%

15%

-0.8

β 4.0 4.000 2.198 3.497 4.010 4.045
γ1 -0.3 -0.301 -0.678 -0.539 -0.299 -0.292
γ2 0.2 0.199 -0.242 -0.079 0.202 0.210
c 1.0 0.999 2.507 – 0.992 0.955

1.2

β 4.0 3.999 2.105 3.352 4.001 4.013
γ1 -0.3 -0.300 0.091 -0.044 -0.300 -0.302
γ2 0.2 0.200 0.763 0.568 0.199 0.196
c 1.0 1.002 1.512 – 1.001 0.999

30%

-0.8

β 4.0 4.001 1.587 3.295 4.027 4.039
γ1 -0.3 -0.300 -0.779 -0.635 -0.295 -0.293
γ2 0.2 0.200 -0.360 -0.191 0.209 0.211
c 1.0 0.998 3.095 – 0.978 0.964

1.2

β 4.0 4.002 1.567 3.103 4.009 4.006
γ1 -0.3 -0.301 0.187 0.056 -0.301 -0.300
γ2 0.2 0.201 0.900 0.711 0.197 0.198
c 1.0 1.000 1.791 – 0.996 0.997

30% 15%

-0.8

β 4.0 4.004 1.708 3.304 4.042 4.024
γ1 -0.3 -0.299 -0.767 -0.632 -0.29 -0.295
γ2 0.2 0.201 -0.348 -0.190 0.211 0.206
c 1.0 0.996 2.770 – 0.963 0.976

1.2

β 4.0 4.003 1.548 3.108 4.016 4.033
γ1 -0.3 -0.301 0.189 0.056 -0.303 -0.306
γ2 0.2 0.200 0.903 0.711 0.196 0.191
c 1.0 0.998 1.564 – 0.993 0.992

These are simulations results with 1000 replications and 5000 observations, where (α0, α1) ∈
{(0, .15); (0, .3); (.15, .15); (.15, .30); (.3, .15)} and dependence between D∗ and X is captured by π ∈ {−0.8; 1.2}.
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rates are high and the direction of the correlation between the true binary regres-
sor and the covariates is opposite to true covariate effect. This can be seen, for
instance, for the results of γ1 estimation when α0 = 15%, α1 = 30% and π = 1.2,
or the results of γ2 estimation when π = −0.8 within the same scenario. When
these inconsistencies, including possible sign-switching, occur in empirical studies
with real data, they could have dramatic consequences for evidence-based policy.
In contrast, the proposed estimator (BALS), reported in the last two columns of
Table 1, gives consistent estimates of the true model parameters and are superior
to both the naive OLS and MLS estimators. The BALS estimates using both
known misclassification probabilities (see panel ‘Known’ of BALS) or using esti-
mated misclassification probabilities (see panel ‘Unknown’ of BALS) give results
that are quantitatively similar to those that would obtain from the OLS using
the true (unobserved) binary regressor (see panel ‘True’ of OLS). Importantly, the
BALS estimates appear to be insensitive to the degree of misclassification in the
data.

4.3 Simulation Results for Parameter Bounds

This set of Monte Carlo simulations estimates parameter bounds assuming we
know neither the misclassification rates nor the distribution of the true binary
regressor. We run 1000 replications each using a sample size of n = 5000. Sim-
ulation results are presented in Table 2. Our benchmark are the bounds from
Bollinger (1996) who was the first to propose a method to estimate parametric
bounds for the multiple linear regression framework discussed in this paper, under
weak assumptions about the misclassification rates. The lower and upper bounds
for the model parameters β, γ1, γ2, c and the misclassification probabilities α0, α1

using Bollinger (1996)’s approach are presented in the first panel of Table 2. Our
proposed lower and upper bounds are given in the last two panels of the table. Our
bounds are tighter than the Bollinger bounds for all the parameters considered. In
particular, for each of the slope coefficients β, γ1, γ2, one of our bounds is always
identical to Bollinger whereas the other is always tighter than the corresponding
Bollinger bound. This is also true for the misclassification probabilities where
only the upper bounds are estimated. For the intercept, both our lower and upper
bounds are tighter than the Bollinger bounds. In addition, our proposed bounds
also preserve the sign of the true coefficient more often than the Bollinger bounds.
Overall, the parameter ranges from our bounds are between 45% and 57% of the
ranges obtained using Bollinger’s approach.

We now look at how these methods perform in a real data application.
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Table 2: Simulations Results for Parameter Bounds

π Parameters
True Bollinger Proposed
Value Lower Bound Upper Bound Lower Bound Upper Bound

-0.8

β 4.0 2.863 8.483 2.863 6.063
γ1 -0.3 -0.539 0.641 -0.539 0.133
γ2 0.2 -0.082 1.302 -0.082 0.706
c 1.0 -3.587 2.169 -1.111 2.169
α0 0.00 0 0.296 0 0.229
α1 0.15 0 0.291 0 0.254

1.2

β 4.0 3.021 9.718 3.021 6.054
γ1 -0.3 -1.322 -0.079 -0.642 -0.079
γ2 0.2 -1.269 0.520 -0.290 0.520
c 1.0 -1.152 1.583 0.281 1.520
α0 0.00 0 0.220 0 0.170
α1 0.15 0 0.317 0 0.279

-0.8

β 4.0 2.198 10.011 2.198 6.074
γ1 -0.3 -0.677 0.643 -0.677 -0.022
γ2 0.2 -0.241 1.307 -0.241 0.527
c 1.0 -5.780 2.508 -1.604 2.508
α0 0.15 0 0.404 0 0.357
α1 0.15 0 0.310 0 0.269

1.2

β 4.0 2.104 10.07 2.104 6.295
γ1 -0.3 -1.321 0.092 -0.657 0.092
γ2 0.2 -1.273 0.763 -0.317 0.763
c 1.0 -3.441 1.701 -1.117 1.611
α0 0.15 0 0.339 0 0.302
α1 0.15 0 0.356 0 0.313

-0.8

β 4.0 1.587 11.196 1.587 5.685
γ1 -0.3 -0.780 0.642 -0.780 -0.173
γ2 0.2 -0.361 1.304 -0.361 0.349
c 1.0 -6.363 3.096 -0.939 3.096
α0 0.15 0 0.393 0 0.353
α1 0.30 0 0.433 0 0.407

1.2

β 4.0 1.568 12.815 1.568 6.411
γ1 -0.3 -1.326 0.185 -0.466 0.185
γ2 0.2 -1.266 0.899 -0.033 0.899
c 1.0 -4.043 2.406 -0.721 2.057
α0 0.15 0 0.335 0 0.302
α1 0.30 0 0.471 0 0.445

These are simulations results with 1000 replications and 5000 observations, where (α0, α1) ∈
{(0, 0.15); (0.15, 15); (0.15, 0.30)} and dependence between D∗ and X is captured by π ∈ {−0.8; 1.2}.
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5 The Effect of SNAP on BMI

This section illustrates the applicability of the methods developed in the previ-
ous sections to estimate the effect of participation in the Supplemental Nutrition
Assistance Program (SNAP) on Body Mass Index (BMI), where the participation
indicator may be misclassified. The data are from the public-use version of the
FoodAPS survey and are well described in Courtemanche et al. (2019). We assume
that apart from SNAP participation the other variables are correctly measured and
we ignore the potential endogeneity of SNAP participation in order to focus our
attention on the methods derived in the preceding sections. Our objective is to
compute the proposed BALS estimates and the proposed parameter bounds, as
well as the OLS, MLS and Bollinger bounds for comparison.

The Supplemental Nutrition Assistance Program (SNAP) is a federal nutrition
program which provides nutrition benefits worth more than 60 billion US dollars
a year to supplement the food budget of over 35 million individuals so that they
can purchase healthy food and move towards self-sufficiency. Misclassification er-
rors in SNAP participation status recorded in national surveys is well documented
and the false negative rate estimated in some studies are as high as almost 50%
(see, e.g., Meyer, Mittag & Goerge 2018). FoodAPS is a nationally representative
survey of US households that measures household food purchases as well as health
and nutrition outcomes with a survey and linked administrative data on SNAP.
Using these data, Courtemanche et al. (2019) conducted a validation study and
constructed 12 different “gold standards” and associated misclassification rates in
SNAP participation by combining the information available in two linked admin-
istrative data sources (see Courtemanche et al. 2019, Table 4). To illustrate our
methods and better capture how severe the issues discussed in this paper could
be in practice, we pick the gold standard with the highest misclassification prob-
abilities in the list provided by Courtemanche et al. (2019). Specifically, their
“ADMIN alternate 1” gold standard that we are using gives a false negatives rate
of 32.31% and a false positives rate of 4.78%. We start by taking these misclassi-
fication rates as given, and we use them in our proposed method to estimate the
effect of SNAP on BMI using the self-reported survey data while controlling for
other factors. The summary statistics of the variables use are presented in Table
3 and gives the mean, the standard deviation as well as the pairwise correlation of
each of the variables with the SNAP dummy, the error-ridden binary regressor of
interest. In our estimations, we use the full set of control variables given in Table
3, but we only report a selected set whose correlation with the SNAP indicator is
particularly high or particularly low, in order to focus our attention on the issues
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Table 3: Summary Statistics

Variable Mean Std. Dev. Correlation
with SNAP

BMI 27.920 6.870 0.099
SNAP 0.353 0.478 1.000
Age (years) 42.705 17.891 -0.125
White 0.683 0.465 -0.083
Black 0.147 0.354 0.139
Female 0.538 0.499 0.053
Married 0.425 0.494 -0.200
Previously married 0.213 0.409 0.109
GED and above 0.313 0.464 0.081
Some college 0.280 0.449 -0.058
Bachelor’s degree or higher 0.180 0.384 -0.226
Employed 0.502 0.500 -0.171
Family income (monthly, 1000$) 3.890 3.824 -0.326
Household size 3.282 1.919 0.163
Rural 0.266 0.442 -0.009
Distance to primary food store (miles) 3.263 4.918 -0.015
Authorized primary food store 0.976 0.154 0.007

relevant to our earlier theoretical discussion.4 In particular, as can be seen in the
last column of Table 3, variables such as Female, Rural and Distance to primary
food store have relatively low pairwise correlation with SNAP (with correlation
coefficients 0.053, -0.009, and -0.015 respectively), whereas variables such as Bach-
elor’s degree or higher, Family income, and Household size have relatively higher
pairwise correlation with SNAP (with correlation coefficients -0.226, -0.326, and
0.163 respectively). The other regressors (unreported in our estimation results)
have correlations with either similar magnitudes or somewhere in between. Since
the severity of the hidden bias highlighted in this paper is associated with the ex-
tent of the correlation between the misclassified binary regressor and the controls
variables, it seems useful to particularly look at these extreme correlation cases.

Table 4 presents the model parameter estimates with OLS, MLS and BALS
for the given misclassification probabilities of (α0, α1) = (0.0478, 0.3231) taken
from the validation study of Courtemanche et al. (2019). There is a clear discrep-

4The full set of controls used in our estimations include Age, White, Black, Female, Mar-
ried, Previously married, GED and above, Some college, Bachelor’s degree or higher, Employed,
Family income, Household size, Rural, Distance to primary food store, Authorized primary food
store, and the full set of estimations are available from the authors.
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Table 4: Results using Misclassification Rates from Validation Data

Dependent variable: BMI

Variable OLS MLS BALS

SNAP 1.155 *** 1.924 *** 2.651***
(0.164) (0.350) (0.279)

Female 0.097 0.082 0.083
(0.142) (0.142) (0.147)

Bachelor’s degree or above -1.185 *** -1.062*** -0.693 ***
(0.241) (0.239) (0.251)

Family income (monthly, 1000$) -0.137*** -0.110*** -0.032
(0.021) (0.020) (0.023)

Household size 0.064 0.024 -0.094**
(0.042) (0.041) (0.045)

Rural -0.199 -0.201 -0.207
(0.180) (0.181) (0.186)

Distance to primary food store (miles) 0.050 *** 0.050 *** 0.050***
(0.016) (0.016) (0.016)

Constant 24.155 *** - 22.933***
(0.572) - (6.532)

Notes: Standard errors are in parentheses. Significance codes: ‘*’ p < 0.1, ‘**’ p < 0.05, ‘ ∗ ∗ ∗′ p < 0.01. The
misclassification probabilities from validation data are (α0, α1) = (0.0478, 0.3231) and are taken from Table 4
ADMIN Alternate 1 in Courtemanche et al. (2019). Regressors not reported include Age, White, Black, Married,
Previously married, GED and above, Some college, Employed, Authorized primary food store.

ancy between all three methods presented, as they show completely different and
sometimes opposite results. The effect of SNAP on BMI estimated with BALS is
2.651, that is about 40% higher than the estimate obtained with MLS, and more
than twice the estimate obtained with OLS. The estimated coefficients on the se-
lected set of control variables display similar differences across the three different
methods. While these discrepancies exist regardless of the degree of correlation
between the controls and the misclassified binary regressor (implied by the mere
presence of measurement errors as already known in the literature), they tend to
be exacerbated with higher levels of correlation (as we emphasize in this paper).
For example, while the estimated coefficients for the relatively lowly correlated
controls (Female, Rural, and Distance to primary food store) are not very differ-
ent across methods or are insignificant otherwise, the differences in the estimated
coefficients of the relatively highly correlated controls (Bachelor’s degree or higher,
Family income, and Household size) are more substantial across various methods.
Interestingly, there is a sign-switch in the effect of Household size. While the effect
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of the latter is positive in the OLS and MLS estimates, it is negative and signif-
icant in the BALS estimates. As explained in the theory, this may arise because
in this application the given misclassification probabilities are high and the corre-
lation between Household size and SNAP participation is also relatively high and
positive (as shown in Table 3). As a result, the bias component is high and pos-
itive, leaving the OLS and MLS estimates of the effect of Household size on BMI
positive as obtained here, even if the true effect could be negative as suggested by
our BALS estimate. As for the variables Bachelor’s or higher and Family income,
although they are both also relatively highly correlated with SNAP in the data,
their estimated effects from OLS and MLS likely would not switch sign since these
correlations are negative as are their expected effects on BMI.

Table 5: Results using Estimated Misclassification Rates

Variable OLS MLS BALS

SNAP 1.155*** 1.557 1.756***
(0.164) (1.086) (0.222)

Female 0.097 0.090 0.076
(0.142) (0.142) (0.143)

Bachelor’s degree or higher -1.185*** -1.121*** -1.004***
(0.241) (0.239) (0.244)

Family income (monthly, 1000$) -0.137*** -0.123*** -0.098***
(0.021) (0.020) (0.022)

Household size 0.064 0.043 0.006
(0.042) (0.041) (0.043)

Rural -0.199 -0.200 -0.202
(0.180) (0.180) (0.182)

Distance to primary food store miles) 0.050*** 0.050*** 0.050***
(0.016) (0.016) (0.016)

Constant 24.155*** – 23.756***
(0.573) (6.686)

Notes: Standard errors are in parentheses. Significance codes: ‘*’ p < 0.1, ‘**’ p < 0.05, ‘ ∗ ∗ ∗′ p < 0.01. The
misclassification probabilities are (α0, α1) = (0.0553, 0.1761) and are estimated using the parametric procedure of
Hausman et al. (1998). Regressors not reported include Age, White, Black, Married, Previously married, GED
and above, Some college, Employed, Authorized primary food store.

Given that the proposed BALS estimator uses misclassification probabilities as
inputs and that these probabilities are not always available, it is useful to explore
alternate approaches for obtaining them. This motivates the use of a method such
as the Hausman et al. (1998) procedure for obtaining these misclassification prob-
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abilities as a possible first step in applying the proposed BALS. Table 5 reports
the model parameter estimates with OLS, MLS and BALS based on the estimated
misclassification probabilities obtained from the Hausman et al. (1998) procedure
using the full set of regressors and assuming normality.5 The false positives and
false negatives rates derived from this procedure are 5.53% and 17.61%, respec-
tively. While the estimated false negative rate is lower than the one used in Table
4, its value still lies within the range of gold standards provided in Courtemanche
et al. (2019). Likewise, the estimated false positives rate obtained here is not too
different from the one used in Table 4 and lies within the range of gold standards
in Courtemanche et al. (2019). The results in Table 5 also shows discrepancies
between the three methods and confirm that biases could be substantial. The
level of discrepancies is however lower than in Table 4 given that the rate of false
negatives utilized here is much lower.

Table 6: Estimates of Parameter Bounds

Proposed (BALS) Proposed (Bounds) Bollinger Bounds

Variable Known Unknown Lower Upper Lower Upper

SNAP 2.651 1.756 1.155 66.392 1.155 158.241
Female 0.083 0.076 -1.645 0.097 -4.098 0.097
Bachelor or above -0.693 -1.004 -1.185 13.318 -1.185 33.738
Family income -0.032 -0.098 -0.137 2.947 -0.137 7.288
Household size -0.094 0.006 -4.590 0.064 -11.142 0.064
Rural -0.207 -0.202 -0.437 -0.199 -0.772 -0.199
Distance to food store 0.050 0.050 0.042 0.050 0.029 0.050
Constant 22.933 23.756 -17.806 24.155 -76.886 24.155

False positives rate α0 0.048 0.055 0.000 0.273 0.000 0.275
False negatives rate α1 0.323 0.176 0.000 0.501 0.000 0.503

Notes: The left panel of the column Proposed (BALS) denoted ‘Known’ reports the results of BALS using the
misclassification rates from validation study as given in Table 4. The right panel denoted ‘Unknown’ reports the
results of BALS using the estimated misclassification rates as given in Table 5.

Finally, Table 6 present our parameters bounds when the misclassification prob-
abilities are not given, and the distribution of the true binary regressor is not as-
sumed. The BALS estimates in Tables 4 and 5 are added for comparison; they are
given in panel ‘Known’ (for the case where α0 and α1 are known from validation
studies) and ‘Unknown’ (for the case where α0 and α1 are unknown but estimated

5We do not present the full results of the first-step estimation from Hausman et al. (1998)
procedure since the only output needed there are the estimated misclassification rates; but they
are available from the authors for the interested reader.
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using Hausman et al. 1998), respectively, under the column ‘Proposed (BALS)’ in
Table 6. In addition, we also report parameter bounds based on Bollinger (1996)
which confirm that our bounds are tighter. While the estimates from the proposed
bounds are tighter than the Bollinger bounds, they both cover both the BALS es-
timates based on validation misclassification rates and the BALS estimates based
on estimated misclassification rates. This is also true for the bounds obtained
for the misclassification probabilities. The proposed bounds are tighter than the
Bollinger bounds and both cover the misclassification rates obtained from the vali-
dation study of Courtemanche et al. (2019) as well as the estimates obtained from
the Hausman et al. (1998) procedure.

6 Concluding Remarks

The existing literature on the least-squares estimation of the multivariate linear
regression model with misclassified binary regressors has ignored an important
component of the underlying bias which potentially affects parameter estimates
of all regressors. This bias is driven by the correlation that may exist between
the misclassification error in the binary regressor and other model regressors in
empirical studies. As a result, estimation procedures such as the modified least
squares (MLS) estimator proposed by Aigner (1973) are asymptotically biased un-
less the misclassified binary regressor is orthogonal to all other regressors. This
bias has been carried over subsequent related work and methods on this issue.
We propose two classes of corrections. The first is a bias adjusted least squares
(BALS) estimator that can directly use misclassification probabilities when they
are known or available (e.g. through validation studies). This estimator corrects
for the OLS bias and we show that it is

√
n-consistent and asymptotically nor-

mal. When misclassification probabilities are unknown or unavailable, we show
that the proposed BALS estimator performs equally well when these probabili-
ties are estimated using the Hausman et al. (1998) procedure, provided a correct
distribution for the true binary regressor is assumed. The second is a bounding
method that extends the van Hasselt & Bollinger (2012) approach to the multiple
linear regression setting and provides bounds that are tighter than the Bollinger
(1996) bounds. This approach provides a useful insight for partially identifying the
parameters of a multivariate linear regression model with misclassification errors,
especially when the misclassification probabilities are unknown and a distribution
for the true binary regressor is not assumed. Monte Carlo simulations clearly
demonstrate the perverse effect of the hidden bias and show how both the pro-
posed BALS estimator and the proposed parameter bounds perform well and are
superior to existing methods such as OLS, Aigner (1973) ’s MLS and Bollinger
(1996)’s bounds. As illustrated from an empirical example estimating the effect of
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SNAP on BMI while controlling for other relevant variables that are potentially
correlated with SNAP, the differences between the proposed methods and existing
methods can be substantial. The proposed estimators are easily implementable
and can be used in many other applied settings.

The methods proposed in this paper do not, however, deal with the issue of
endogeneity of the misclassified binary regressor, which is an important one in
practice especially for studies involving non-experimental data. Our main focus is
on correcting for the hidden bias that exist and could be severe even in the case
where the true binary regressor is exogenous. Another limitation is the assump-
tion of constant misclassification rates that we maintain throughout our analysis.
This limitation may be substantial in applications where the measurement error is
endogenous and vary with covariates beyond the true binary regressor (e.g., Krei-
der et al. 2012, Nguimkeu et al. 2019). These considerations are left for future
research.

7 Appendix: Mathematical Proofs

7.1 Proof of Lemma 1

Proof. We can write:

Cov(Xi, Ui) = E[XiUi]− E[Xi]E[Ui] = E [XiE[Ui|Xi, D
∗
i ]]− E[Xi]E [E[Ui|Xi, D

∗
i ]] ,

where the last display follows from the Law of Iterated Expectations (L.I.E). Now,

E[Ui|Xi, D
∗
i = 0] = Pr[Ui = 1|Xi, D

∗
i = 0] = Pr[Di = 1|Xi, D

∗
i = 0] = α0

E[Ui|Xi, D
∗
i = 1] = −Pr[Ui = −1|Xi, D

∗
i = 1] = −Pr[Di = 0|Xi, D

∗
i = 1] = −α1.

Hence, E[Ui|Xi, D
∗
i ] = α0(1 − D∗i ) − α1D

∗
i = α0 − (α0 + α1)D∗i . It follows that

E[XiUi] = α0E[Xi]− (α0 + α1)E[XiD
∗
i ] and E[Ui] = α0 − (α0 + α1)E[D∗i ], so that

Cov(Xi, Ui) = −(α0 + α1) (E[XiD
∗
i ]− E[Xi]E[D∗i ]) = −(α0 + α1)Cov(Xi, D

∗
i ).

7.2 Proof of Corollary 1

Proof. Since Cov(Xi, εi) = 0 by assumption, then

Cov(Xi, εi − βUi) = −βCov(Xi, Ui) = β(α0 + α1)Cov(Xi, D
∗
i )

where the last equality follows from Lemma 1. If Cov(Xi, D
∗
i 6= 0, then we must

have Cov(Xi, εi − βUi) 6= 0, provided we are not in a trivial situation where β is
zero or the misclassification probabilities are both zero.
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7.3 Proof of Lemma 2

Proof. For the first equality, we already know from Lemma 1 that Cov(Xi, Ui) =
−(α0 + α1)Cov(Xi, D

∗
i ) = −(α0 + α1)Cov(Xi,E[D∗i |Xi]), by the L.I.E. Now, since

E[Di|Xi] = Pr[Di = 1|D∗i = 0] Pr[D∗i = 0|Xi] + Pr[Di = 1|D∗i = 1] Pr[D∗i = 1|Xi]

= Pr[Di = 1|D∗i = 0](1− Pr[D∗i = 1|Xi]) + (1− Pr[Di = 0|D∗i = 1]) Pr[D∗i = 1|Xi]

= α0 + (1− α0 − α1)E[D∗i |Xi]

This means

E[D∗i |Xi] =
E[Di|Xi]− α0

1− α0 − α1

(18)

It follows that

Cov(Xi, Ui) = −(α0+α1)Cov

(
Xi,

E[Di|Xi]− α0

1− α0 − α1

)
= −

(
α0 + α1

1− α0 − α1

)
Cov(Xi, Di)

The second equality follows from Equation (3c) of Aigner (1973) , which
states that Cov(Di, Ui) = (η + ν)Var(Di), where η = Pr[D∗i = 0|Di = 1] =

α0
Pr[D∗i = 0]

Pr[Di = 1]
= α0

1− P ∗

P
and ν = Pr[D∗i = 1|Di = 0] = α1

Pr[D∗i = 1]

Pr[Di = 0]
=

α1
P∗

1− P
. Notice that Equation (18) above implies P ∗ =

P − α0

1− α0 − α1

. It follows

that

η = α0
1− P ∗

P
= α0

1− α1 − P
(1− α0 − α1)P

, ν = α1
P − α0

(1− α0 − α1)(1− P )
.

If we denote ζ = η+ ν = 1− (P − α0)(1− α1 − P )

(1− α0 − α1)P (1− P )
, we then have Cov(Di, Ui) =

ζVar(Di), the desired result.

7.4 Proof of Theorem 1

Proof. The proof is straightforward. It follows from taking Equation (4) and plug-
ging in the values of Cov(Di, Ui) and Cov(Xi, Ui) given by the identities established
in Lemma 2.

7.5 Proof of Theorem 2

Proof. (i) Consistency. The equation set which determines (β̂, γ̂) is given by[
SDY
SXY

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

] [
β̂
γ̂

]
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so that[
β̂
γ̂

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
SY D
SY X

]
=

[
β
γ

]
+

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
,

that is,[
β̂ − β
γ̂ − γ

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
. (19)

Hence, taking the probability limits and applying Slutsky’s lemma, we have

plim

[
β̂ − β
γ̂ − γ

]
= plim

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1

plim

[
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
= Ω−1Γ

where, by the weak law of large numbers, we have

Ω = plim

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]
=

[
(1− ζ)Var(Di) Cov(Di, Xi)

(1 + θ)Cov(Xi, Di) Var(Xi)

]
(20)

and

Γ = plim

[
SDε − β(SDU − ζSDD)
SXε − β (SXU − θSXD)

]
=

[
Cov(Di, εi) + β (Cov(Di, Ui)− ζVar(Di))

Cov(Xi, εi)− β (Cov(Xi, Ui) + θCov(Xi, Di))

]
.

But, by the L.I.E., E[εi|Xi, Di] = E [E[εi|Xi, D
∗
i ]|Xi, Di] = 0, so that Cov(Di, εi) =

Cov(Xi, εi) = 0. Lemma 2 then implies that Γ = 0, and hence plim

[
β̂ − β
γ̂ − γ

]
= 0.

This is equivalent to plimβ̂ = β and plimγ̂ = γ.

(ii) Asymptotic Normality. Suppose E[εi|Xi, D
∗
i ] = σ2. Then, by the L.I.E.,

E[ε2
i |Xi, Di] = E

[
E[ε2

i |Xi, D
∗
i ]|Xi, Di

]
= σ2.

Now multiplying Equation (22) above by
√
n, we have

√
n

[
β̂ − β
γ̂ − γ

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1√
n

[
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
, (21)
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which is asymptotically equivalent to

√
n

[
β̂ − β
γ̂ − γ

]
a
= Ω−1

√
n

[
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
= Ω−1

√
nΓn. (22)

Denote:

Z =
[
D −D X −X

]
, Z =

[
D −D 0

0 X −X

]
, Ψ =

[
(U − U)− ζ(D −D)
(U − U) + θ(D −D)

]
,

where Z, Z, and Ψ are n× (1 + k), 2n× (1 + k) and 2n× 1 matrices, respectively.
Then

√
nΓn =

√
n

[
SDε − β(SDU − ζSDD)
SXε − β(SXU + θSXD)

]
=
√
n

[
Z ′ε

n
− βZ′Ψ

n

]
By the central limit theorem, and given that the vector ε is asymptotically uncor-
related with the components of Z′Ψ, the asymptotic variance of Γn is then given
by

Ξ = σ2plim
Z ′Z

n
+ β2plim

Z′ΣΨZ

n

with

ΣΨ =

[
Var(Ui)− ζ2Var(Di) Var(Ui)− ζ2Var(Di)
Var(Ui)− ζ2Var(Di) Var(Ui) + (2θζ + θ2)Var(Di)

]
⊗In =

[
κIn κIn
κIn κ̃In

]
where

κ = Var(Ui)− ζ2Var(Di), and κ̃ = κ+ (ζ + θ)2Var(Di)

Noticing that Var(Ui) = (ζ − θ(1− ζ)) Var(Di), we then have:

Ξ =

[
(σ2 + β2κ)Var(Di) (σ2 + β2κ)Cov(Di, Xi)

(σ2 + β2κ)Cov(Xi, Di) (σ2 + β2κ̃)Var(Xi)

]
. (23)

where:

κ = (1− ζ)(ζ − θ)Var(Di), and κ̃ =
[
(1− ζ)(ζ − θ) + (ζ + θ)2

]
Var(Di) (24)

We therefore conclude that
√
n

[
β̂ − β
γ̂ − γ

]
d−→N (0,Σ), with

Σ = Ω−1ΞΩ−1 (25)

where the matrices Ω, and Ξ are given by equations (20), (23) and (24). All the
components of the matrix Σ can be easily estimated from sample information and
knowledge of the misclassification probabilities. Specifically, these quantities are
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estimated using their sample counterparts and by plugging in the BALS estimates
β̂ and γ̂, as well as the residual variance σ̂2 defined by

σ̂2 =
1

n

n∑
i=1

(Yi − Ŷi)2, where Ŷi = ĉ+ β̂
Di − α0

1− α0 − α1

+X ′iγ̂. (26)

Now, noticing that
√
n(β̂−β) = e′(1)

√
n

[
β̂ − β
γ̂ − γ

]
and
√
n(γ̂−γ) =

[
0 Ik

]√
n

[
β̂ − β
γ̂ − γ

]
,

where e(1) =
[

1 0 . . . 0
]′

is a (k + 1) × 1 vector and Ik is the identity matrix

of size k, we can finally derive the asymptotic variances of β̂ and γ̂ from Σ by
defining

σ2
β = e′(1)Σe(1), and Σγ =

[
0 Ik

]
Σ

[
0
Ik

]
(27)

Then, by Slutsky’s lemma, we have:

√
n(β̂ − β)

d−→N(0, σ2
β), and

√
n(γ̂ − γ)

d−→N(0, Σγ)

7.6 Proof of Corollary 2

Proof. To prove the consistency of ĉ, we note that Y = c+ βD∗ +X
′
γ + ε̄. Then

ĉ− c = βD∗ − β̂ D − α0

1− α0 − α1

+X
′
(γ − γ̂) + ε̄

= β

(
D∗ − D − α0

1− α0 − α1

)
+ (β − β̂)

D − α0

1− α0 − α1

+X
′
(γ − γ̂) + ε̄

Then taking the probability limits and using the the law of large numbers, we have

plim(ĉ− c) = β

(
P ∗ − P − α0

1− α0 − α1

)
+ plim(β̂ − β)

P − α0

1− α0 − α1

+E[Xi]
′plim(γ − γ̂) + E[εi]

= 0,

by the consistency of β̂ and γ̂ and the relationship between the true and the re-
ported mean responses.
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For the asymptotic normality, we write

√
n(ĉ−c) =

[
D − α0

1− α0 − α1

X
′
]√

n

[
β̂ − β
γ̂ − γ

]
+[β 1]

√
n

 D∗ − D − α0

1− α0 − α1

ε̄

 .
Then, using the asymptotic variance of [β̂, γ̂]′ derived above, Σ, and the indepen-
dence of εi with respect to D∗i , Di and Xi, the asymptotic variance of ĉ is obtained
as

σ2
c = H ′ΣH +

β2(θ + ζ)

1− α0 − α1

Var(Di) + σ2 (28)

where H =

[
P − α0

1− α0 − α1

E[Xi]
′
]′

is the vector of mean regressors from the

true model. As above, this variance can be estimated using sample information
and knowledge of the misclassification probabilities.

7.7 Proof of Theorem 3

Proof. Recall that the BALS Estimator is given by[
β̂
γ̂

]
=

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]−1 [
SY D
SY X

]
= Ωn(α)−1

[
SY D
SY X

]
where α = (α0, α1) and Ωn(α) =

[
(1− ζ)SDD SDX
(1 + θ)SXD SXX

]
.

In the FBALS estimation, we replace the unknown matrix Ωn(α) with a con-
sistent estimator Ωn(α̂), that is:[

ˆ̂
β
ˆ̂γ

]
=

[
(1− ζ̂)SDD SDX
(1 + θ̂)SXD SXX

]−1 [
SY D
SY X

]
= Ωn(α̂)−1

[
SY D
SY X

]
where α̂ = (α̂0, α̂1) is the estimator of α = (α0, α1) obtained in the first-step.

The asymptotic properties of the FBALS given by part (i) and part(ii) of the
theorem, it is sufficient to show that

plim

[ ̂̂
β − β̂̂̂γ − γ̂

]
= 0 (29)

Then by Slutsky’s Theorem, it will readily follow, given Theorem 2, that

plim

[ ̂̂
β̂̂γ
]

=

[
β
γ

]
and that plim

[ ̂̂
β̂̂γ
]

has the same asymptotic distribution
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as

[
β̂
γ̂

]
. Given the continuity of the inverse function and Assumptions 1-2, it is

sufficient to show that plim [Ωn(α̂)− Ωn(α)] = 0 for Equation (29) to hold.

plim [Ωn(α̂)− Ωn(α)] = plim

[
(ζ − ζ̂)SDD SDX
(θ̂ − θ)SXD SXX

]
=

[
plim(ζ − ζ̂)Var(Di) Cov(Di, Xi)

plim(θ̂ − θ)Cov(Xi, Di) Var(Xi)

]
= 0

where the last two equalities follow from the law of large numbers, the continuous
mapping theorem, and the consistency (α̂0, α̂1).

7.8 Proof of Theorem 4

We can write D̃i = (1 − α0 − α1)D̃∗i + νi, where E[νi|Xi, D
∗
i ] = 0. The residual

model given in (17) can also be rewritten as

Ỹi = δD̃∗∗i + εi, E[εi|D̃∗∗i ] = 0 (30)

where δ =
β

1− α0 − α1

and D̃∗∗i = (1− α0 − α1)D̃∗i .

Our bounding approach proceeds as follows. We start by bounding the regres-
sion slope δ from the residual model (30). The quantity δ is an index of the amount
of measurement error in the system, since for a given β, a larger δ implies larger
values of α0 +α1. For a given amount of measurement error δ, the possible values
of α0 and α1 are determined. Since β = (1−α0−α1)δ, the set of all possible values
of β given all feasible values of δ, α0 and α1 can then be derived as the identifying
set.

Lemma 3. Under Assumptions 1-2, we have

b ≤ δ ≤ min

{
σ2

0(1− P )2

σD̃Ỹ (1− α0)α1

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]
,

σ2
1P

2

σD̃Ỹ (1− α1)α0

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]}
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Proof. The conditional variance of Yi given Xi and Di = 0 can be obtained as

σ2
0 = Var[Ỹi|Xi, Di = 0] = δ2Var[D̃∗∗i |Xi, Di = 0] + Var[εi|Xi, Di = 0]

= δ2(1− α0 − α1)2Var[D̃∗i |Xi, Di = 0] + Var[εi|Xi, Di = 0]

= δ2(1− α0 − α1)2 Var[D∗i ]α1(1− α0)

(1− P )2
+ Var[εi|Xi, Di = 0]

= δ2(1− α0 − α1)2 Var[D̃∗i ]α1(1− α0)

(1−R2
D∗X)(1− P )2

+ Var[εi|Xi, Di = 0]

= δ2 Var[D̃∗∗i ]α1(1− α0)

(1−R2
D∗X)(1− P )2

+ Var[εi|Xi, Di = 0]

Now, notice that Cov(D̃i, Ỹi) = δVar[D̃∗∗i ]. Hence

σ2
0 = δ

σD̃Ỹ α1(1− α0)

(1−R2
D∗X)(1− P )2

+ Var[εi|Xi, Di = 0]. Since Var[εi|Xi, Di = 0] ≥ 0,

we then have σ2
0 ≥ δ

σD̃Ỹ α1(1− α0)

(1−R2
D∗X)(1− P )2

, so that δ ≤ σ2
0(1− P )2

σD̃Ỹ (1− α0)α1

(1− R2
D∗X).

Finally, given the results in Lemma 1, we show that

R2
D∗X =

Cov(D∗, X)Var(X)−1Cov(X,D∗)

Var(D∗)
=

P (1− P )R2
DX

(P − α0)(1− α1 − P )
.

It follows that

δ ≤ σ2
0(1− P )2

σD̃Ỹ (1− α0)α1

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]
(31)

Likewise, the conditional variance of Yi given Xi and Di = 1 can be obtained
as

σ2
1 = Var[Ỹi|Xi, Di = 1] = δ2Var[D̃∗∗i |Xi, Di = 1] + Var[εi|Xi, Di = 1]

= δ2(1− α0 − α1)2Var[D̃∗i |Xi, Di = 0] + Var[εi|Xi, Di = 1]

= δ2(1− α0 − α1)2 Var[D∗i ]α0(1− α1)

P 2
+ Var[εi|Xi, Di = 1]

= δ2(1− α0 − α1)2 Var[D̃∗i ]α1(1− α0)

(1−R2
D∗X)P 2

+ Var[εi|Xi, Di = 1]

= δ2 Var[D̃∗∗i ]α0(1− α1)

(1−R2
D∗X)P 2

+ Var[εi|Xi, Di = 1]

= δ
σD̃Ỹ α0(1− α1)

(1−R2
D∗X)P 2

+ Var[εi|Xi, Di = 1]
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Since Var[εi|Xi, Di = 1] ≥ 0, we then have σ2
1 ≥ δ

σD̃Ỹ α0(1− α1)

(1−R2
D∗X)P 2

, so that

δ ≤ σ2
1P

2

σD̃Ỹ (1− α1)α0

(1 − R2
D∗X). Plugging in the expression of R2

D∗X obtained

above, we also have

δ ≤ σ2
1P

2

σD̃Ỹ (1− α1)α0

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]
(32)

From inequalities (32) and (32), we must then have

δ ≤ min
{ σ2

0(1− P )2

σD̃Ỹ (1− α0)α1

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]
,

σ2
1P

2

σD̃Ỹ (1− α1)α0

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )

]} (33)

This gives us an upper bound for δ. The lower bound is obtained by noticing

that Var(D̃i) = Var(D̃∗∗i ) + Var(νi) =
Cov(D̃, Ỹ )

δ
+ Var(νi). That is, Var(νi) =

σ2
D̃
− σD̃Ỹ

δ
. Since Var(νi) ≥ 0, we then have σ2

D̃
≥ σD̃Ỹ

δ
, so that

δ ≥ σD̃Ỹ
σ2
D̃

= b (34)

Lemma 4. Given Model (1) and any feasible value of δ from Lemma 3, we have

α1 = (1− P )

{
1−

(
P

P − α0

)[
(1−R2

DX)
b

δ
+R2

DX

]}
(35)

Proof. Given that D̃i = (1−α0−α1)D̃∗i +νi = D̃∗∗i +νi, we have, on the one hand,

Var(D̃i) = (1− α0 − α1)2Var(D̃∗i ) + Var(νi)

= (1− α0 − α1)2Var(D∗i )(1−R2
D∗X) + Var(νi)

= (P − α0)(1− α1 − P )(1−R2
D∗X) + Var(νi)

so that

Var(νi) = Var(D̃i)− (P − α0)(1− α1 − P )(1−R2
D∗X)

= Var(D̃i)− (P − α0)(1− α1 − P )

[
1− P (1− P )R2

DX

(P − α0)(1− α1 − P )
)

]
= Var(D̃i)− (P − α0)(1− α1 − P ) + P (1− P )R2

DX

(36)
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On the other hand, Var(D̃i) = Var(D̃∗∗i ) + Var(νi) =
σD̃Ỹ
δ

+ Var(νi) so that

Var(νi) = Var(D̃i)−
σD̃Ỹ
δ

= Var(D̃i)

[
1− b

δ

]
= Var(D̃i)−

b

δ
P (1− P )(1−R2

DX)

(37)
Equalizing (36) and (37) yields

(P − α0)(1− α1 − P )− P (1− P )R2
DX =

b

δ
P (1− P )(1−R2

DX)

Solving for α1 then gives the desired result.

Proof of Part (i) of Theorem 4

Denote τ = 1− α0 − α0 so that we can write β = τδ. The maximum value of
τ occurs when α0 = 0 or α1 = 0.
If P > 1/2, then the upper bound is associated with the case where α0 = 0. In
this case, the value of α1 is given by

αm1 = (1− P )(1−R2
DX)

(
1− b

δmax,0

)
where δmax,0 denotes the corresponding value of δ. The inequality in Lemma 3,
then reduces to

b ≤ δ ≤ σ2
0(1− P )2

σD̃Ỹ α
m
1

(
1− (1− P )R2

DX

(1− αm1 − P )

)
≤ σ2

0(1− P )2

σD̃Ỹ α
m
1

(
1−R2

DX

)
This implies that δmax,0 and αm1 are jointly determined by the system:

δmax,0 =
σ2

0(1− P )2

σD̃Ỹ α
m
1

(
1−R2

DX

)
, αm1 = (1− P )(1−R2

DX)

(
1− b

δmax,0

)
which yields

δmax,0 = b+
σ2

0(1− P )

σD̃Ỹ
= b+ κ0 and αm1 =

(1− P )2σ2
0(1−R2

DX)

bσD̃Ỹ + σ2
0(1− P )

(38)

Then, the maximum value of β when P > 1/2 is given by

βmax,0 = τmax,0δmax,0 = (1− αm1 )δmax,0 = δmax,0 − αm1 δmax,0

= δmax,0 − (1− P )(1−R2
DX)

(
δmax,0 − b

)
= δmax,0

[
1− (1− P )(1−R2

DX)
]

+ b(1− P )(1−R2
DX)

= (b+ κ0)
[
1− (1− P )(1−R2

DX)
]

+ b(1− P )(1−R2
DX)

(39)
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If P < 1/2, then the upper bound is associated with the case where α1 = 0.
Using Lemma 4 the value of α0 is given by

αm0 = P (1−R2
DX)

(
1− b

δmax,1

)
where δmax,1 denotes the corresponding value of δ. The inequality in Lemma 3,
then reduces to

b ≤ δ ≤ σ2
1P

2

σD̃Ỹ α0

(
1− PR2

DX

(P − α0)

)
≤ σ2

1P
2

σD̃Ỹ α0

(
1−R2

DX

)
This implies that δmax,1 and αm0 are jointly determined by the system:

δmax,1 =
σ2

1P
2

σD̃Ỹ α
m
0

(
1−R2

DX

)
, αm0 = P (1−R2

DX)

(
1− b

δmax,1

)
which yields

δmax,1 = b+
σ2

1P

σD̃Ỹ
= b+ κ1 and αm0 =

P 2σ2
1(1−R2

DX)

bσD̃Ỹ + σ2
0P

(40)

Hence, the maximum value of β when P < 1/2 is given by

βmax,1 = τmax,1δmax,1 = (1− αm0 )δmax,1 = δmax,1 − αm0 δmax,1

= δmax,1 − P (1−R2
DX)

(
δmax,1 − b

)
= δmax,1

[
1− P (1−R2

DX)
]

+ bP (1−R2
DX)

= (b+ κ1)
[
1− P (1−R2

DX)
]

+ bP (1−R2
DX)

(41)

It follows that δ is bounded by

b ≤ δ ≤ δmax,01[P > 1/2] + δmax,11[P < 1/2] = b+ κ, (42)

where κ0 =
σ2

0(1− P )

σD̃Ỹ
, κ1 =

σ2
1P

σD̃Ỹ
, and κ = κ01[P > 1/2] + κ11[P ≤ 1/2]. Like-

wise, β is bounded by b ≤ β ≤ βmax = max{βmax,0, βmax,1}, where βmax,0 and
βmax,1 are given by Equations (38) and (40), respectively.

Proof of Part (ii) of Theorem 4

Notice that ψ = Var(Xi)
−1Cov(Xi, Yi) = Var(Xi)

−1Cov(Xi, c + βD∗i + X ′iγ +
εi) = βVar(Xi)

−1Cov(Xi, D
∗
i ) + γ = δVar(Xi)

−1Cov(Xi, Di) + γ = δλ+ γ.
That is,

γ = ψ − δλ. (43)
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Hence, γj = ψj − δλj, j = 1, . . . , k. If λj ≥ 0, then by the inequality b ≤ δ ≤ b+ κ
obtained from Expression (42) above, we must have ψj−bλj−κλj ≤ γj ≤ ψj−bλj.
Otherwise, if λj ≤ 0, then we must instead have ψj − bλj ≤ γj ≤ ψj − bλj − κλj.

Proof of Part (iii) of Theorem 4

We can write:

ψ0 − δλ0 = E[Y ]− E[X]′ψ − δE[D] + δE[X]′λ

= E[Y ]− E[X]′Var(X)−1Cov(X,Y )− δE[D] + δE[X]′Var(X)−1Cov(X,D)

= E[Y ]− βE[D∗] + δα0 − E[X]′Var(X)−1Cov(X, c+ βD∗ +X ′γ + ε)

+βE[X]′Var(X)−1Cov(X,D∗)

= c+ E[X]′γ − δα0 − βE[X]′Var(X)−1Cov(X,D∗)− E[X]′γ

+βE[X]′Var(X)−1Cov(X,D∗)

= c− δα0

That is
c = ψ0 − δλ0 + δα0 ≥ ψ0 − δλ0

The lower bound of c is then cmin = ψ0 − δλ0. Since b ≤ δ ≤ b + κ, this means
cmin = min {ψ0 − bλ0, ψ0 − (b+ κ)λ0}.

We obtain the upper bound of c as follows. We know from the preceeding
discussions that the value of α0 associated with any upper bound (i.e. whether

P > 1/2 or P ≤ 1/2) is such that 0 ≤ α0 ≤ P (1 − R2
DX)

(
1− b

δ

)
, where

b ≤ δ ≤ δmax,1 = b+ κ1. We then have

c = ψ0 − δλ0 + δα0 ≤ ψ0 − δλ0 + P (1−R2
DX) (δ − b)

= ψ0 − δ
[
λ0 − P (1−R2

DX)
]
− bP (1−R2

DX)

If λ0−P (1−R2
DX) ≤ 0, then cmax = ψ0−b [λ0 − P (1−R2

DX)]−bP (1−R2
DX) =

ψ0 − bλ0

If λ0−P (1−R2
DX) < 0, then cmax = ψ0− (b+κ1) [λ0 − P (1−R2

DX)]− bP (1−
R2
DX) = ψ0 − (b+ κ1)λ0 + P (1−R2

DX)κ1.

Proof of Part (iv) of Theorem 4
The upper bounds of α0 and α1 are given by αm0 and αm1 in Equations (40) and
(38), respectively. �

Proof that the bounds in Theorem 4 are tighter than the bounds in
Bollinger (1996, Theorem 5)
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Notice that the bounds in Theorem 4 above have expressions similar to the
bounds in Bollinger (1996, Theorem 5), except that in the former κ0 or κ1 are

used in lieu of d− b in the latter, where d =
Var(Ỹi)

Cov(Ỹi, D̃i)
is the inverse of the OLS

coefficient of the regression of Ỹi on D̃i .
We therefore only need to show that b + κ0 < d and b + κ1 < d to conclude.

We know, from Equations (38) and (40), that this is equivalent to showing that
δmax,0 < d and δmax,1 < d, where δmax,0 is the value of δ associated with (α0, α1) =
(0, αm1 ) and δmax,1 is the value of δ associated with (α0, α1) = (αm0 , 0).

To see why these inequalities hold, notice that from Equation 30, i.e. Ỹi =
δD̃∗∗i + εi, we have

Var(Ỹi) = δ2Var(D̃∗∗i ) + Var(εi) = δCov(Ỹi, D̃i) + Var(εi) (44)

Therefore Var(εi) > 0 implies Var(Ỹi)−δCov(Ỹi, D̃i) > 0, i.e. δ <
Var(Ỹi)

Cov(Ỹi, D̃i)
= d,

and this inequality is true for any couplet of (α0, α1). Hence, it holds for the
particular cases δmax,1 and δmax,1 of δ. �
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