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“New roads, agriculture, employment, education, these are just a few of the things

we can offer you, and I assure you ladies and gentlemen, that if we do find

oil here, and I think there’s a very good chance that we will, this community of

yours will not only survive, it will flourish”—Daniel Plainview, There Will Be Blood.

1 Introduction

What determines where people choose to live? Within a country, where migration frictions are

less pronounced, environmental amenities like warm temperature (Roback, 1982), mountain

viewsheds (Groothuis, Groothuis, and Whitehead, 2007), clean air (Chay and Greenstone,

2005), and rainfall (Englin, 1996) clearly matter. But real wages are also important; positive

labor demand shocks attract people from near and far away. This feature of human behavior

is well documented in the economics literature and is especially salient in the resource-based

development literature, which affirms a robust relationship between natural-resource shocks,

labor demand, and inward migration (Jacobsen and Parker, 2016; Alcott and Keniston, 2017;

Feyrer, Mansur and Sacerdote, 2017; Richter, Salanguit and James, 2018; James and Smith,

2020). But this literature has overlooked the joint role of economic shocks and environmental

amenity. Just as a high school degree is more important for people with low cognitive ability

(Murnane, Willett, and Tyler, 2000), a boost to productivity might be especially important

for otherwise less desirable locations.

We examine how large and localized productivity shocks—in the form of major oil and

mineral discoveries—affect long-run population growth, and examine how these shocks inter-

act with pre-existing geographic properties of the discovery site. Estimating long-run, truly

posterior effects of economic shocks requires an analysis of events that happened long ago.

However, doing so is often frustrated by the lack of available data; causal inference typically

requires observing initial conditions. While census records provide historical subnational pop-

ulation estimates, county borders change over time and additional counties are added as new

territories are acquired. To account for these issues, we make use of novel geospatial pop-

ulation count estimates measured at a 1-km2 resolution for decades between 1790 and 2010
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constructed by Fang and Jawitz (2018). These data, along with our identification strategy, al-

low us to measure both short, medium and long-run effects (e.g., 100 years) of natural-resource

discoveries.1

We uniquely explore important heterogeneities in the effect of resource shocks along two

dimensions: environmental amenity value and geographic isolation. Rather than relying on

existing estimates of county-level environmental amenity, which may reflect endogenous factors

such as school quality (Bieri, Kuminoff and Pope, 2014), we use the idea that people “vote with

their feet” (Tiebout, 1956) and construct a data-driven estimate of amenity value that is a

function of purely exogenous, naturally-occurring characteristics like warm weather, mountain

viewsheds, terrain ruggedness, and soil quality. We measure geographic isolation as the cost

of traveling from a county to the nearest major market, defined as either an existing city,

railroad, or marine highway. Instead of relying on an “as the crow flies” measure of distance,

we develop a novel measure of geographic isolation that incorporates information about terrain

ruggedness and water coverage between locations.

We separately consider discoveries of major oil fields and mineral deposits. The former

effects tends to be more persistent (i.e., counties that discovered oil 100 years ago tend to

be producing oil today, albeit not necessarily from the same oil field), making it difficult to

estimate truly posterior effects. However, mineral discoveries, while still creating significant

labor demand, tend to be much smaller in value and are commonly exhausted within fifty

years of discovery. This feature of the data allows us to test for path dependence, the idea

that places develop because of historical influences that lead to agglomeration effects and

persistent development.

The event-study analysis indicates that, fifty years after discovering oil, population density

in the average treatment county is roughly 65% greater than it otherwise would have been.

However, this average effect conceals important heterogeneities. When limiting our sample

1It is important to note that our population analysis only applies to non-indigenous peoples. Our popu-
lation data from Fang and Jawitz (2018) reconstructs spatial population distributions that do not consider
Native Americans, because the US Census did not begin counting Native Americans until 1900. Therefore we
stress that when we refer to uninhabited frontier locations, we mean uninhabited by non-indigenous peoples.
Exploring how the population dynamics studied in this paper interacted with the pre-existing presence of
Native Americans is beyond the scope of this paper but would be an interesting avenue for future study.
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according to environmental and geographic favorability, we find that for relatively unfavorable

counties (those with low amenity value or high transportation cost) the long-run treatment

effect on population increases to roughly 170%. While the results for moderate-favorability

places are similar to the overall average treatment effect, effects for high-favorability places

are qualitatively small and statistically insignificant.

Examining the effect of mineral discoveries reveals similar heterogeneities, although the

effects tend to be short lived, with one exception: geographically isolated places with high

transportation cost are more likely to have people living in them fifty years after discovering

a mineral deposit nearby. One somewhat speculative interpretation of this finding is that

resource extraction contributes to the fixed cost of transportation infrastructure necessary for

a place to become livable. We provide some supporting evidence for this by showing that

otherwise geographically isolated places near mineral discoveries are, today, more likely to

have access to roads and railroads.

We carry out several robustness checks designed to test for endogeneity bias and reverse

causality, and explore the sensitivity of the results to various modeling assumptions. Our

results prove to be quite robust and do not appear to be driven by endogenous natural-resource

discoveries (whereby economic development leads to discovery). In particular, while discovery

is potentially endogenous, the size of discovery is left to chance and we find that discoveries of

large oil fields generate significantly larger effects than discoveries of small fields. We also reject

the idea that our heterogeneous results are mechanical, whereby low-favorability places are less

populated to begin with, and so experience larger percent increases in population following the

discovery of a resource. Our analysis also addresses recent methodological scrutiny of the two-

way fixed effects estimator in difference-in-differences approaches (e.g. Goodman-Bacon, 2018;

Sun and Abraham, 2020), and re-estimates our main results using the interaction-weighted

estimator developed by Sun and Abraham (2020).

Taken together, we conclude that naturally occurring amenity value, geographic isolation,

and labor market opportunities jointly determine where people choose to live. We also find

that the importance of one factor depends on the absence or presence of the other; a major

resource shock in a place with high amenity value (e.g., southern California) may have minimal
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long-run effects. But a discovery in a less desirable, more geographically isolated place, such

as North Dakota, may be critical for long-run economic development. In doing so, we make a

number of important contributions to the development, regional, and environmental economics

literature.

Most directly, we contribute to a large literature that examines the short- and long-run

economic and political effects of resource extraction, booms, and discoveries (Michaels, 2011;

Weber, 2012, 2014; Jacobsen and Parker, 2016; Muehlenbachs et al. 2015; Berman, et. al.

2017; Alcott and Keniston, 2017; Feyrer, Mansur and Sacerdote, 2017; Matheis, 2016). To

our knowledge, we offer the first event-study analysis of historical oil and mineral discoveries

in the United States, allowing for more robust causal inference. Because many major resource

deposits were discovered in the late 1800s, researchers often rely on the use of cross sections

of data which are not well suited to identify pre trends in development. Because we obseve

many (e.g., fifty years) of pre-discovery population data, we can better isolate and identify the

causal effect of discoveries. This alone constitutes a significant contribution to the existing

literature. But in addition to this, the existing literature almost exclusively estimates average

treatment effects. We demonstrate that important heterogeneities exist, raising questions

about the external validity of any region-specific analysis. This may help to explain the wide

variety of the estimated effects of resource booms, including the literature exploring the recent

shale-energy boom that is synthesized by Marchand and Weber (2018). Finally, we add to the

literature on economic geography by providing novel estimates of local, naturally-occurring

amenity value and geographic isolation that complement the work of Blomquist, Berger, and

Hoehn (1988), Allen and Arkolakis (2014), Henderson, et. al. (2017), among others.

This paper is organized as follows: Section 2 lays out a theory of how natural geographic

properties interact with resource shocks to bring about long-run population growth. Section 3

discusses the two main identification strategies and Section 4 describes the estimation of both

amenity value and transportation cost. The various data sources are discussed in Section 5

and the results are given in Section 6. Section 7 presents a series of robustness checks and

Section 8 concludes.
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2 Theoretical Motivation

In their seminal paper, Corden and Neary (1982) model the effects of a booming natural-

resource sector in a small open economy. The resource boom increases labor demand in that

sector, and assuming free labor movement, employment in both the service and manufac-

turing sectors falls, and wages in all sectors rise. This is the so-called, “labor movement”

effect. There is also an income effect brought about by the subsequent demand shock for

non-resource goods and services. This causes the price of services to rise (because service

prices are determined locally), but leaves the manufacturing price unchanged as this price

is determined in international markets. Rising service prices incentivises additional services

production and employment. Taken together, a resource discovery translates to a positive

labor demand shock, and this raises wages not only in the resource sector, but in traded and

non-traded non-resource sectors as well. The model further predicts that resource booms have

the potential to grow the non-traded service sector, while shrinking the traded manufacturing

sector.

Empirical evidence is consistent with the idea that booming natural-resource sectors cause

local wages to rise (see for example Weber, 2012, 2014; Jacobsen and Parker, 2016; Alcott and

Keniston, 2017; Feyrer, Mansur and Sacerdote, 2017; Richter, Salanguit, and James, 2018;

James and Smith, 2020). However, there is little evidence that manufacturing employment

shrinks in response to a booming resource sector. To the contrary, existing evidence suggests

that local non-resource sectors move procyically with resource shocks. One possible explana-

tion is that significant inward migration offsets some of the Dutch Disease effects (Coulombe

and Vermeulen, 2015) and it is well established that resource booms—and energy booms

in particular—attract labor from near and far away (Salanguit, Richter, and James, 2018;

Wilson, 2020).

Temporary labor demand shocks also have the potential to permanently populate a place.

Existing studies examine how historical events that concentrate populations in certain areas

lead to agglomeration effects and persistent development, or “path-dependence”. Bleakley

and Lin (2012) show that portage locations in the South and Mid-Atlantic United States,
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made obsolete by more modern transportation modes, have maintained their outsized role as

economic hubs. Some portage sights have even grown into major metropolitan centers such

as Philadelphia and Chicago. Michaels and Rauch (2017) provide additional evidence of path

dependence by studying the collapse of the Roman Empire, which they argue allowed Britain

to reset its urban network achieving more favorable coastal access for long run growth. See

also Jedwab et al. (2017) who study colonial rail networks in Kenya and Davis and Weinstein

(2002) who examine the dynamic effect of negative shocks to city sizes from the allied bombing

of Japanese cities during World War 2. Central to the idea of path dependence is the idea

that established communities offer economic advantages over less populated areas. These

advanages might come in the form of reduced transportation costs of goods (Krugman, 1991)

or of labor (Glaeser, 2010). Others argue that agglomeration benefits come from knowledge

spillovers and learning by doing. A related theory posits that firms in urban areas share public

goods that are inputs to production—such as access to deep labor markets, transportation

infrastructure, schools, and other services (Eberts and McMillen, 1999). The per capita

cost of building and manainting an airport, for example, decreases as population rises and

is prohibitively expensive for sparsely populated areas. It’s worth noting too that positive

resource shocks tend to generate additional public revenue that state and local govenments

can use to finance public goods such as education and transportation infrastructure (James,

2015).

In the presence of agglomeration effects, even a temporary labor demand shock brought

about by the discovery of, say, a major oil field, could permanantly populate a place even if

the resource is subsequently exhausted. The key question is whether the resource shock is

both necessary and sufficient for agglomeration effects to take hold. In this context, a small

discovery might not attract a sufficiently large number of people to finance the fixed costs of

building a town. In this case, when the resource is exhausted, people simply move away. In the

event a resource discovery is not “necessary”, the discovery site would have been developed

even in the absence of the discovery. People typically congregate to places with moderate

climates (Roback, 1982), mountain view sheds (Groothuis, Groothuis, and Whitehead, 2007),

moderate rainfall (Englin 1996) , clean air and water (Chay and Greenstone, 2005; Carson and
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Cameron, 1993) and in proximity to the ocean and sea ports that offer valuable viewsheds,

recreation opportunities, and access international markets (Fujita and Mori, 1996). Southern

California, for example, is rich with natural amenities and sea ports and also happens to

be home to some of the largest oil fields ever discovered in the United States. Even today,

southern California produces roughly the same amount of crude oil as Alaska. And yet, it is

difficult to imagine that the oil-rich counties of Orange, San Luis Obispo, Kern, Los Angeles,

Monterey, Santa Barbara, and Ventura would not be heavily populated in the absence of

major oil discoveries occurring in the late 1800s and early 1900s. And of course neighboring

counties that did not experience large oil discoveries—such as San Diego, Santa Clara, and

San Mateo are similarly populated. This observation suggests there may be an asymmetry in

the medium and long run population effects of historical resource discoveries. Whereas highly

desirable locations, such as southern California, might develop even in the absense of major

resource discoveries, other, less desirable locations, may not.

Based off of these observations and the existing literature, we predict that major resource

discoveries attract labor and increase the local population. Whether this effect is persistent

and long-lasting depends on the pre-existing desirability of the discovery site. High amenity,

desireable locations are likely to become heavily populated regadless of a natural-resource dis-

covery. As such, one may expect to find minimal long run effects of discoveries in these places.

Less desireable locations—with rugged terrain, cold weather, and geographic isolation—might

remain unpopulated in the long run without the initial labor demand shock generated by a

major natural-resource discovery.

3 Identification Strategy

Our main analysis is an event-study framework that estimates the dynamics of population

around the time that a resource discovery is made. Our analysis separately considers two

varieties of high-value non-renewable resources: oil fields and metallic mineral deposits.2 Oil

2Metallic minerals include the precious metals (e.g. gold, silver, platinum group metals), major metals,
(e.g. iron, copper, lead, zinc, tin, aluminum), alloying metals (e.g. nickel, molybdenum, cobalt), rare and
specialized metals (e.g. the lanthanides, gallium, lithium, uranium, beryllium). However, we exclude nearly
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fields and mineral resources provide complementary evidence of the effect of non-renewable

resource discovery on long-run economic development. Generally speaking, oil fields in the

United States are geographically larger, economically more valuable, and have longer periods

of utilization relative to mineral deposits. We therefore anticipate finding more significant and

persistent treatment effects for oil. The unique geographic and temporal distribution of oil and

mineral discoveries also lends to somewhat distinct empirical strategies. The complementary

nature of these strategies show the robustness of our findings, while also providing insight into

the underlying mechanisms. Since America has been thoroughly prospected and only a few

discoveries have been made since the 1950s, our treatment sample should closely correspond

to the true distribution of resources within the United States.

Our analysis considers heterogeneity across two dimensions: local amenity value and trans-

portation cost to national and international markets. Local amenities are utility-improving ex-

ogenous characteristics relating to weather, proximity to mountains and coasts, and soil qual-

ity. Transportation cost is based on the distance from—and topographic features between—a

particular location and the nearest market. We create a discrete three-point scale of locations

based on their favorability in these two dimensions. The most favorable locations have high

amenity values and/or low transportation cost. Unfavorable locations have low amenity values

and/or high transportation costs. Moderate locations fall in between. We assign locations

into low, medium or high bins according to 20th/80th percentile cutoffs of our numerical

amenity and transportation cost values (the construction of these measures is described in

Section 4). To evaluate heterogeneous effects of resource discovery, we separately estimate

both our event study and cross-sectional models within each amenity and transportation cost

bin. Our measure of local amenity is determined only by a county’s climate and geography

and is therefore exogenous with respect to the economic outcomes of interest. Our measure of

transportation cost is based on both geographic factors and proximity to cities existing prior

to the American oil and mineral booms.

The event study examining effects of resource discoveries on local population density is

all non-metallic mineral resources (e.g. sand/gravel, clay, stone, phosphate, pot ash). We also exclude coal
resources (despite their regional significance) because the discovery of major bituminous coal basins in the
United States pre-dates the country’s independence.
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specified below:

ln(Pop)i,s,t = α +
∑

u6=−10

βuEi,t+u +
2000∑

t=1870

γtXi + φi + δs,t + εi,t (1)

where ln(Pop)i,s,t is the natural log of population density for county i in state s in census

year t,3 Ei,t+u is a set of indicators equal to one if county i experienced a major discovery4 u

years ago, with u = -10 as the omitted category. A set of year indicators is given by γt and

Xi is a set of fixed properties of county i. These properties include dummies for whether the

county is in the low, medium, or high amenity bin, whether the county is in the low, medium,

or high transport cost bin, and the population density as of 1870 to control for convergence

effects. County fixed effects are given by φi and δs,t is state-year fixed effects. The coefficient

of interest, βu, represents the effect of discovering oil u years ago. We observe population

every 10 years (corresponding to national censuses) from 1870 to 2000 (excluding 1960, which

is missing from our population data. See Section 5.3), using 1870 as a cutoff because that is

before the first major oil discovery and also when the vast majority of counties have non-zero

population and thus are not dropped from our natural-log specification. We assign the event

year (u=0) as the first census year after a county makes its first discovery. Standard errors

are clustered at the county level.

We first estimate Equation (1) for the full nationwide sample of counties to find an overall

average effect of oil discoveries. We then estimate it separately for each transportation cost

and amenity bin to study heterogeneous effects by location favorability. When analyzing a

certain amenity bin, we retain our transportation cost-by-year interactions as controls (and

vice versa), which is important since amenity value and transportation cost are correlated.

For the full sample, we expect βu to be positive in the periods after discovery. We also expect

the population effects in favorable locations to be smaller than in unfavorable locations.

3To account for shifting county borders over time, for each census year we find the population within
present-day county borders using our spatial population data set. See Section 5.3 for further detail.

4As detailed in Section 5, a major oil discovery is of a field known to contain at least 100 million barrels.
A major mineral deposit is one described as “world class” in the USGS Mineral Resources Data System.
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We conduct an analogous exercise for mineral discoveries, with several key differences.

Whereas our data on oil fields is given at the county level,5 we know the precise spatial

coordinates of mineral deposits (e.g., the mine shaft entrance or center of the ore-body). We

leverage this property along with our geospatial data providing decennial population estimates

at a 1-km2 cell resolution to analyze cell-level population effects in close proximity to mines. A

cell-level analysis offers major advantages over a county-level one. First, mineral deposits are

more geographically confined than oil fields, and cell-level analysis allows us to more accurately

define treatments based on mine proximity. Second, since mineral deposits are more common

in mountainous areas, they tend to appear in less densely populated and geographically larger

counties with a mix of rugged and flat terrain. (Even within the western US, counties with

a mine discovery are roughly twice as large on average as those without.) Cell-level analysis

allows us to more precisely control for local terrain ruggedness.

Another key difference for our mineral analysis is that the vast majority of major mineral

discoveries occurred in the western U.S. at a time when it was extremely sparsely populated

by non-indigenous peoples. (The first gold rush in northern California occurred in 1848, the

same year most of the western U.S. was annexed from Mexico.) We therefore limit our mining

sample to Western states.6 We also use the sample period of 1850-1950, which covers the

period from when most of the West became U.S. territory to at least a few decades after the

vast majority of mineral discoveries.

For our baseline mineral specification, a cell is considered treated if it is within 30 miles of

a major deposit that has been exploited.7 Deposits tend to be in especially rugged mountain

areas and the associated mining towns sometimes locate fairly far away in the nearest flat land

(Durango, Colorado for example). There is a tradeoff between choosing a treatment distance

that is large enough to capture this phenomenon but small enough that any effects are not

washed out over large distances. We choose 30 miles as a baseline, as the resulting footprint

5As discussed in Section 5, we know the counties in which major oil fields were discovered, but we do not
know the precise locations of fields.

6New Mexico, Colorado, Wyoming, Montana, Arizona, Utah, Nevada, Idaho, California, Oregon, Wash-
ington.

7The USGS mineral deposit data indicates present-day development status. We only use mines with status
“Producer” or “Past Producer” and do not use those with status “Occurrence” or “Prospect”. This eliminates
15 of the 194 world-class deposits in the Western US.
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of a circle with radius 30 miles (2,827 square miles) is roughly equal to the average size of

counties in our Western US sample (2,866 square miles), so treatment areas are commensurate

with our county-level oil analysis. But we also estimate effects using 5, 10, and 50 miles in

Appendix B.

We define the event year as the first census year after the mine is discovered, though for

several mines this date of discovery is not available. For these cases, we use the first production

date instead. If both the discovery year and first production year are unavailable, we do not

include the mine in our analysis. This eliminates an additional 39 world-class deposits from

our sample (after dropping non-producing deposits). Cells near multiple mines are assigned

the earliest event year. We do not include cells with an event census year before 1860 or after

1950, so that we have at least one observation before and after treatment for each treated cell,

and those are compared only to cells that are untreated. This leaves us with 129 world-class

deposits with which to identify effects of mineral discovery.

Because the vast majority of cells are uninhabited by non-indigenous peoples at the be-

ginning of our sample period, we also modify our outcome variable in Equation 1 to be a

binary indicator variable that equals 1 if the cell contains a population of at least one and

zero otherwise. We therefore consider this an analysis of extensive margin population effects

in the American West. Figure A.7 shows how this cell-level population dummy evolves over

space and time within our sample. The fact that the Western U.S. is so sparsely populated

during the mineral discovery period makes this setting particularly relevant for testing the

theory outlined in Section 2.

Finally, we also modify our control variables for the mineral analysis. First, we re-bin the

amenity index and transportation cost measures for the Western U.S. cell-level sample, again

using 20th/80th percentile cutoffs.8 Second, we do not control for convergence effects since

the outcome is an indicator dummy and the initial population is zero for the vast majority of

the sample. Third, we create cell-level ruggedness bins (again using 20th and 80th percentile

cutoffs) and additionally control for ruggedness9 interacted by year; although average cell

8Our amenity index is constructed at the county level, so we assign each cell within a county the same
index score. See Section 4.

9See Section 4.2 for information about our ruggedness measure.
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ruggedness is a component of our county-level amenity value that is applied to cells (see

Section 4.1), we can measure local ruggedness much more precisely at the cell level, and this

is plausibly a major factor in determining cell-level population growth. Finally, for the mineral

analysis standard errors are clustered at the zip code level.10

4 Amenity Value & Transport Cost

Our analysis considers heterogeneity across two dimensions of location favorability: local

natural amenity values and transport cost to the nearest market. In this section we describe the

construction of novel measures of both. Local amenities are utility-improving characteristics

such as temperature, humidity, soil productivity, and sunlight hours. Transport cost is based

on the distance from—and topographic features in between—a particular location and the

nearest market.

4.1 Estimation of Amenity Value

We construct an index of amenity value that reflects a large variety of strictly exogenous, nat-

urally occurring environmental characteristics. These characteristics are theoretically utility

improving for residents, and as we describe in Section 2, higher levels of amenity should, all

else equal, result in larger population levels as people “vote with their feet.” We leverage

this intuition in constructing our index. Namely, we regress the total population living in a

county on a vector of county-level amenity characteristics and state fixed effects. The resulting

regression coefficients (excluding state fixed effects) are then used to construct a county-level

amenity index, as described below.11

10An alternative would be county-level clusters, but for the regressions that restrict the sample to certain
amenity or transport cost bins this results in more parameters than clusters.

11Our estimation of amenity value fits into a large literature that estimates the value of non-marketed
amenities. Following Rosen (1974, 1979), hedonic price models assume that environmental amenities are
capitalized into local prices. Examining wages and housing prices in the United States, Albouy et al. (2016)
estimate willingness to pay (WTP) for a variety of exogenous environmental amenities including sunshine
and temperature. Population density is also strongly correlated with exogenous, non-marketed environmental
amenities such as temperature, sunshine, and precipitation (Albouy and Stuart, 2014). Because we are
interested in estimating historical non-marketed amenity value, and lacking detailed historical data on wages
and land prices, we use predicted population density as a proxy for amenity value.
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For a given census year, we flexibly model amenity-driven population using the following

specification:

ln(Pop)i,t =
∑
k

f(ak,i) + si + εi, for t ∈ [1870, 2000], (2)

where Popi,t is the natural log of population density in county i in decade t, si are state fixed

effects, and ak,i refers to a particular amenity k for county i. Recognizing that the effect of

continuously measured amenities (such as temperature) may be highly non-linear, we flexibly

model the effects of such amenities with a set of decile bins for each amenity. These amenities

are average January temperature, average July temperature, average January sunlight, average

annual humidity, average annual rainfall, soil quality, and terrain ruggedness. We also include

dummy variables that identify counties on the coast, near (within 50 miles of) a mountain

range, and within a mountain range. Finally, we control for a location’s transportation cost

using the estimates described in Section 4.2.

To calculate the index value for a given county, we multiply the coefficient values from

Equation (2) by the county’s amenity variables, but exclude transportation cost (so the index

is conditional on transport cost) and the state fixed effects. Therefore we are identifying

amenity values using within-state variation, but then applying these values across the country

without including state averages, which are impacted by many other unobservable factors.12

Finally, we allow for the effect of these amenities to change in value over time by estimating

Equation (2) separately for each decade, and likewise construct the index separately by decade.

The index is then averaged over time to provide a single value of amenity that reflects both

contemporary and historical preferences for various amenities over our sample period. For our

cell-level mineral analysis, cells are assigned the amenity index value of the county they lie

12Suppose we did not include state fixed effects in Equation (2). Then this analysis would be vulnerable to
over-fitting. For example, the Eastern U.S. is much more densely populated than the west, which may be for
many reasons unrelated to amenities. Without state fixed effects the model would simply weight amenity traits
that are common in the east. Because we are using many amenity traits, the within-sample predictions would
likely be very good even if all predictors were in fact irrelevant. But by conditioning on state fixed effects,
we eliminate correlations based on broad regional patterns of population density, and identify amenity value
based only on within-state variation. Then, excluding state fixed effects from the amenity index calculation
ensures that we only base the index on observable amenity traits that apply equally to all counties.
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within. We use this information in our analysis of resource discoveries by assigning counties

(or cells) to either high, medium or low amenity groups based on 20th and 80th percentile

cutoffs.

One concern with using population as an outcome measure to construct an amenity index

is that it is circularly related to our main outcome variable: population density. This would

be true if the effects of interest were the main effects of amenity value on population. But we

are specifically interested in the marginal effect of a resource discovery given a certain level

of amenity. This is somewhat analogous to the intuition of a quantile-style regression model,

but instead of dividing the range of the outcome variable by quantiles of its distribution, we

divide estimates by the distribution of the outcome according to the amenity index.

Panel (a) of Figure A.4 describes environmental amenity value by county. For comparison,

panel (b) maps population density in 2000. Several notable features emerge. First, the

correlation between our amenity index and observed population density in 2000 is quite strong.

Our model predicts that coastal counties should be more heavily populated, as well as mid-

western counties east of the Rocky Mountain range. The model also predicts that the Salt

Lake Valley and Denver county (which are relatively flat places, but near mountains) should

be more heavily populated relative to nearby counties, which we also observe. We also predict

that the northern part of the U.S. should be less populated due largely to below-average

temperatures. There is also some error in the model. For example, whereas we predict

southeastern Arizona should be sparsely populated due to its very arid and hot climate, it

is actually densely populated. We similarly predict that parts of northern California and

southern Oregon should be more heavily populated than they are. For the year 2000, the

correlation between our predicted log of population density and actual log density is 0.57.

Several sources of data are utilized to construct the amenity index. Data on temperature

were collected from the USDA Natural Amenities Scale. Total January sunlight hours is

measured as an average from 1941-1970.13 Data on annual rainfall (averaged over 1961-1990)

by county comes from the USGS.14 County-level soil quality data come from Schaetzl, Krist,

13See Figure A.3 for a spatial description of each of these USDA inputs to the amenity value index.
14The data is available at: https://catalog.data.gov/dataset/united-states-average-annual-precipitation-

1961-1990-direct-download.
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and Miller (2012) and measure exogenous “natural native soil productivity,” which reflects

soil characteristics such as soil tilth, clay mineralogy, organic carbon content, and the presence

of root-impeding layers. Our spatial mountain range shapefile comes from “Landforms of the

World,” from ArcGIS online. The measure of terrain ruggedness for 1-km2 cells is described in

the following subsection. For the county-level amenity index, we use the average ruggedness

measure for cells within a county.

4.2 Estimation of Transportation Cost

This subsection describes the construction of the transport-cost variable used in our main

analysis. We first describe the nature of the transportation cost problem and then discuss a

discrete formulation of the problem and how it is parameterized.

Broadly, we are interested in the variable cost Cf,m of moving goods to and from a frontier

location f , to a nearest market m. One approach would be to proxy for Cf,m using “as-

the-crow-flies” distance between f and m, as in Redding and Venables (2004), for example.

However, this distance ignores potentially important topographic features (mountains, marsh-

land, large lakes and rivers), which may exist between the frontier and markets. In a practical

U.S. context, Denver, Colorado is approximately as close to the port of San Francisco as it

is to the port of Houston (approximately 1,500 kilometers). However, between Colorado and

San Francisco are the Rocky Mountains, Great Basin Ranges, and Sierra Nevada Mountains,

which pose significantly higher transportation costs than the relatively flat Denver-Houston

route.

A second option might be to refine the distance proxy by calculating the cost along re-

alized modern transportation networks (as in Donaldson and Hornbeck, 2016). This method

acknowledges topography between f and m via the realization of the network; engineers in-

corporate the cost of building transportation networks in rugged terrain. A problem with

this method in our setting is that the spatial pattern of the contemporary transportation net-

work is potentially endogenous to historical resource discoveries, as intermittent cities develop

nearby.

Given the shortcomings of these alternatives, we construct an exogenous measure of trans-
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portation cost that exploits important topographic features between places. Our estimate is

based on a transportation cost framework common in linear and network programming. The

transportation-cost problem conceptualizes the United States as a grid of 1-km x 1-km cells,

with each cell i having associated cost ci, which is incurred to pass through it. Transportation

cost is a function of the distance across the cell (which in our case is fixed at 1-km), and

the topography of the cell. Each frontier location f seeks the least-cost path to any market

location m across this grid. Because the actual cost of transportation within any given cell

is unobserved, we develop an approximation of the transportation model’s cost parameters

inferred by the structure of the modern rail network. From the solution to the transportation

cost problem, the likelihood of the presence of modern rail in a given cell is a decreasing

function of the cost associated with traveling through that cell. We estimate this relationship

using a logistic regression model of the form:

raili,2017 = f(terraini) + εi, (3)

where the binary variable raili,2017 = 1 if cell i contains rail as of 2017 and 0 otherwise and

f(terraini) is a function of the ruggedness of the terrain within the cell and the percentage of

the cell containing water. Intuitively, both uneven terrain and bodies of water such as lakes

and rivers pose significant and expensive challenges for the construction of a railroad. To

measure ruggedness, we use the National Elevation Dataset (NED), which provides elevation

measures at a 30x30 meter resolution. We define ruggedness as the standard deviation of

elevation within each 1-km2 cell in the grid. To avoid making assumptions about linearity,

we include indicator variables for every percentile of ruggedness within the sample. The

percentage of water within a cell is measured by decile-bin indicators for having no water,

between 0-10% water, 10-20% water, and so on.

We use the estimated model to predict fitted probability values of observing rail in a given

cell, i.e. P(rail|terrain) = ˆrail for the entire grid. Next, we transform the model’s fitted

values into an approximation of cost, using the inverse of rail probability: ĉi = 1/ ˆrail. This

transformation is somewhat arbitrary, but makes the reasonable assumption that a cell with
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half the probability of containing a rail line is twice as costly to traverse (and for our purposes

only relative cell costs are important, since we ultimately evaluate heterogeneous treatment

effects by relative differences in total transport costs). Intuitively it makes sense that the

relationship between the probability of rail and rail construction cost is non-linear. When

construction cost is very high, increasing construction cost arguably has little effect on the

probability of rail. But when cost is low, increasing cost is more likely to make alternative

routes more appealing from a cost-minimization standpoint.

Figure A.8 presents the estimates from Equation 3 of the change in rail probability asso-

ciated with values of terrain ruggedness and water. We generally find a consistent negative

relationship between rail probability and ruggedness, with an especially steep drop in proba-

bility at more extreme values. However, we do oddly find a steeply increasing rail probability

for the first few percentiles (i.e., the most flat ones).15 The percentage of water coverage is

also generally negatively associated with rail probability.

With the transportation cost problem parameterized, we populate our U.S. grid with our

estimated cost values and solve for the lowest-cost path between every cell and the lowest-cost

market destination.16 We define market destinations as rail lines existing as of 1870, marine

highways, and pre-existing cities of at least 5000 people.17 In this way, our transportation

cost measure captures the difficulty of constructing a new rail line to access the existing rail

or waterway network (which then allow goods to be transported to any market destination at

relatively low cost) or to a city plausibly large enough in size to serve as a market in its own

right. The cost of traversing this lowest-cost path is then our cell-level transportation cost

measure. Finally, we average cell-level transportation cost estimates to the county level.

We evaluate the accuracy and soundness of our transportation cost measure by comparing

15This fact is at least partially explained by the fact that many relatively flat cells lie very near the coast,
and rail lines are rarely so close to the ocean. Many other flat cells are observed in the remote salt flat region
of Utah and Nevada, and also the upper reaches of the Northern Midwest where glaciers carved the landscape.
Because few people live in these largely remote, and yet relatively flat terrains, there are few rail lines present.
However, the overall relationships shown in Figure A.8 are robust to state fixed effects, further suggesting that
near perfectly flat terrain tends to be indicative of somewhat inhospitable land (aside from coastal cells)

16This is done with the “Cost Distance” tool in ArcGIS.
17For the analysis of oil discoveries we use cities of at least 5000 as of 1900, since this is shortly before the

vast majority of oil discoveries. For the analysis of mineral discoveries we use cities as of 1850, reflecting the
timing of most mineral discoveries.
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the predicted lowest-cost paths between cities to the actual rail network in four separate

case studies. We do not expect to find that predicted paths perfectly match actual ones; by

design our prediction is based purely off of exogenously determined geographic features of

the landscape, and in reality, transportation infrastructure reflects a number of endogenous

factors including the location of pre-existing markets. We nonetheless use these case studies

to shed some light on the predictive power of our estimates, and to test whether our model

simply predicts linear least-cost paths. Figure A.5 shows these four instructive examples

in the western US, where the prevalence of mountains will often make the lowest-cost path

indirect. The first example, Santa Fe to Salt Lake City, shows that the modern rail network

is endogenous to regional economic development. We estimate the lowest-cost path as a

relatively straight line through mostly flat terrain. In reality, the rail network heads north out

of Santa Fe to Denver, Colorado, or west to Los Angeles, before heading to Salt Lake City,

Utah. The Santa Fe, New Mexico to Salt Lake City, Utah connection is likely not important

enough to build an additional, more direct route. A similar argument likely holds for the

Boise-Sacramento connection. However, our predicted path aligns very well with the actual

rail lines between Denver, Colorado and Las Vegas, Nevada, which avoid a route that is much

more direct but covers more rugged terrain. Finally, the Boise-Helena route offers perhaps

the most straightforward test of our cost parameterization: both cities are important enough

to be rail hubs, there are few or no other major cities in the area that might divert rail lines,

and there are mountains blocking the most direct path. In this case both our predicted path

and the actual rail network go around the mountains and through the valley to the south in

a very similar way, demonstrating that our procedure is at least in some cases applying an

appropriately high penalty of mountain terrain in finding the lowest-cost path.

Figure A.6 shows cell-level transportation costs, along with 1870 rail lines, marine high-

ways, and cities of at least 5000 (green dots). The results in panel (a) limit the cities that

serve as markets to those that had populations greater than 5,000 by 1850 (used for the

mineral deposit results), while for panel (b) cities with populations greater than 5,000 by

1900 also serve as markets (used for the oil results). Note how costs increase rapidly as one

moves east from the headwaters of the Columbia River in Washington State into Idaho and
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Montana, while costs rise more gradually as one moves west from Minnesota into the Dako-

tas. These figures show the locations with the highest transportation costs are Montana,

Wyoming, North Dakota, the Four-corners area (New Mexico, Utah, Colorado, and Arizona)

and Western Texas. Population expansion between 1850 and 1900 reduced the isolation of

these locations to some degree, but many areas in the Western United States still remained

highly isolated.

5 Data

In this section we describe the data sources used in the estimation of equation (1). We collected

additional data from a variety of sources for the estimation of county-level amenity value and

transport cost. That data is discussed in detail in the corresponding amenity and transport

cost estimation subsections in Section 4 above.

5.1 Oil Discovery Data

Data on large, historical oil field discoveries were collected from the Oil and Gas Journal Data

Book (2000). The book identifies, by year and field name, all U.S. discoveries of oil fields

containing at least 100 million barrels of oil up to the year 1999, of which there were 263. Oil

fields were matched by name to U.S. counties using the Energy Information Administration

(EIA) Oil and Gas Field Code Master List, 2015. Matching oil field discoveries to U.S. counties

decreases the number of observed discoveries to 231.

Panel (a) of Figure A.1 shows the spatial distribution of the major oil field discoveries.

The majority of discoveries took place in a handful of states: Texas, California, Wyoming,

Montana, Utah, Oklahoma, Louisiana, and New Mexico. Though a number of discoveries were

also made in North Dakota, Mississippi, Kansas, Colorado, Arkansas, Alabama, and Illinois.

Figure A.2 describes the temporal distribution of the discoveries. The earliest discovery was

made in 1880, and the latest in 1988. The large majority of the discoveries were made early

in the 20th century. For example, roughly 85% occurred prior to 1950 and 45% occurred prior

to 1930. Only 9 discoveries (3.4%) occurred post 1970.
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For context, we estimate the gross in-situ value of oil fields at the time of their discov-

ery. Using data from BP’s Statistical Review of World Energy, we estimate that the median

discovery has a value of $2.6B in 1998 USD. The 5th percentile field is $1.2B and the 95th

percentile is $18B.

5.2 Mineral Discovery Data

Data on the location (geographic coordinates), date, and significance of metallic mineral

discoveries comes from the USGS’s Mineral Resources Data System (MRDS). MRDS char-

acterizes the size of mineral discoveries as being of “world class significance” or not. This

is a qualitative designation by the USGS, but is based on the total endowment of contained

commodity, which includes all past production and reserves. Each commodity is considered

separately for this designation. In other words, the tonnage required for world class signifi-

cance is different for gold than for iron. As described in Section 3, a number of deposits in

MRDS do not have a known discovery date. In this case, we assign the date the deposit first

came into commercial production as the treatment year. If this date is also missing, we drop

the deposit from the sample.

As shown in Figure A.1, mineral resources exist primarily in the western United States.

While the eastern United States contains a significant number of individual coal mines and

non-metallic mineral quarries, we do not consider these resources in our analysis. Figure A.2

describes the temporal distribution of the world-class discoveries within the western US. The

earliest discovery was made in 1800 (though the next one was not until 1848), and the latest

in 1981. The majority of the discoveries were made late in the 19th century. Roughly 74%

occurred prior to 1900, and 43% occurred prior to 1880. A little over one third of the deposits

produce gold as the primary commodity, but the sample contains a number of copper, zinc,

iron and molybdenum deposits as well. As with oil, we estimate the gross in-situ value of

world class mineral deposits at the time of their discovery, with mineral price data assembled

from USGS Series 140. For the 65 deposits with sufficient data on grade and tonnage, we

estimate that the median discovery has a value of $302m in 1998 USD. Relative to oil fields,

mineral deposits have a much larger range of values. The 5th percentile deposit is $0.6m and
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the 95th percentile is $31.5B.

5.3 Population Data

Various data limitations necessarily restrict our analysis to population dynamics, but this is

also an important outcome variable to consider. To the extent that people do, indeed, “vote

with their feet”, population density serves as a proxy for quality of life. In this regard, it is

a more revealing statistic than, say, average income which may reflect significant inequality,

regional price differences, or serve as a compensating differential. In this vein, we follow in

the footsteps of Tiebout (1956) who argued that people move to consume the optimal bundle

of private and public goods. Others have also explicitly used population density as a proxy

for historical levels of economic development (Acemoglu, Johnson, and Robinson, 2002) or to

test for path dependence (Bleakley and Lin, 2012; 2015)18.

We estimate the long-run effect of resource discovery on nearby population. Our population

data comes from Fang and Jawitz (2018), which provides geospatial population count estimates

at a 1-km2 resolution for every decade from 1790-2010 except for 1960, for which digital urban

population data are missing. Estimates are based on county-level census counts, which are

then down-scaled to the 1-km2 level using five models of increasing complexity. We use the

most complex model “M5,” which is demonstrated to be the most accurate. This specification

utilizes the spatial extent of urbanization and non-inhabitable areas (e.g., water bodies and

mountains), topographical features and the distance to city centers to disaggregate county

census counts. Some of the inputs to the Fang and Jawitz (2018) model are similar to variables

we use in constructing our amenity index, such as topographical data (see Section 4.1). This

does not confound our analysis of amenity impacts because our amenity scores are constructed

at the county level, and the Fang and Jawitz (2018) model is only used to distribute census

population counts within counties.

18It is important to note that our population analysis only applies to non-indigenous peoples. Our popu-
lation data from Fang and Jawitz (2018) reconstructs spatial population distributions that do not consider
Native Americans, because the US Census did not begin counting Native Americans until 1900. Therefore we
stress that when we refer to uninhabited frontier locations, we mean uninhabited by non-indigenous peoples.
Exploring how the population dynamics studied in this paper interacted with the pre-existing presence of
Native Americans is beyond the scope of this paper but would be an interesting avenue for future study.
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For our county-level analysis of oil resource discoveries, we aggregate the 1-km2 resolution

population maps up to modern county boundaries. In this way, we have a consistent spatial

unit for analysis over time. For our analysis of mineral discoveries, we use the 1-km2 data

directly. A potential adverse consequence of using estimated population data is that it may

attenuate our mineral discovery results (oil discovery results will be unaffected as they are

estimated at the county level). Population growth nearby a mine that is not large enough to

be defined by Fang and Jawitz (2018) as an urban area (defined as population >2,500) can

be partially diffused throughout the rural portions of a county, underestimating population

in the treatment nearby the mine and overestimating population further away in the control

areas.

The unconditional means of population outcomes, as well as the amenity and transport

cost estimates, are presented for oil rich and oil poor U.S. counties in Table A.1. Cell-level

population statistics for mineral-rich and mineral-poor cells are given in Table A.2.

6 Results

6.1 Oil Discoveries

On average, large-scale resource discoveries cause local population growth that can last several

decades past the time of discovery. We show oil discoveries generate persistently higher local

populations relative to their non-discovery counterparts. Population effects for mineral discov-

eries are more transient, peaking around 20 years after discovery. Further dis-aggregating the

results reveals geographic heterogeneity in the population dynamics. Resource locations with

favorable amenities and market access develop similarly to favorable non-resource locations.

The average population effect of resource discovery is instead driven by the growth experi-

enced in moderate and unfavorable locations. Finally, we show that the size and longevity of

resource discoveries also shape the population growth levels and dynamics.

Estimated from Equation (1), Figure 1 plots the estimated effects of oil discovery on logged

population density by event-time for the 50 years before and after a discovery (with the first
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census decade prior to discovery as the reference period), along with 95% confidence intervals.

Prior to discovering the resource, both oil-rich and oil poor counties conditionally grow at

similar rates. However, population density in oil-rich counties is 20% larger than the counter-

factual in the decade a discovery is made, and 65% larger after five decades.19 Not all types

of oil-rich counties experience this effect, however. Figure 2 plots the population dynamics

associated with oil discovery when estimating Equation (1) with the sample limited to each of

the six amenity and transportation cost groups. To aid comparison we also include the 95%

confidence interval from the full-sample result from Figure 1 (shaded in gray). Unfavorable

locations are those with low amenity values or high transportation costs, favorable locations

have the reverse characteristics, and moderate locations fall in between. Unfavorable locations

experience by far the largest population effects from oil discoveries, while moderate locations

also see significant, albeit relatively smaller, effects. Favorable locations experience no signifi-

cant effects. These findings persist through the end of the sampled post-discovery period with

no indication of attenuating effects 50 years after discovery. While there is some pre-existing

trend for unfavorable locations 30-50 years before discovery, trend is negligible for the twenty

years prior to discovery for all favorability bins.20

19Note that the dependent variable is the natural log of population density. As such, β implies a eβ − 1
percent change in population density.

20In the robustness section we discuss the results from an alternative model specification in which the event
indicator is interacted with the z-score of favorability and we separately control for the interaction of initial
population and event time. This effectively reduces pre-existing trends 30-50 years before discovery that is
present in the “unfavorable” panels of Figure 2.
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Figure 1: Log Population Density effect of Oil Discovery.
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The graph plots the average

effects of oil discovery on log population density over time estimated from Equation 1. 95% confidence

intervals are included. In the pooled dataset, population density is 20% (65%) larger in oil rich counties one

(five) decades after discovery relative to counties without a discovery.

Figure 2 shows very similar effects for the low-amenity and high-transport-cost bins. This

is due to similar treatment groups for both bins. Although they are constructed independently,

there is correlation in favorability between amenity and transportation cost measures. For the

full sample, there are still many counties that are counted as unfavorable by one measure

but not by the other. But within the treatment group, 90% of low-amenity counties are

also high transport cost, largely due to a disproportionate number of counties in western

Texas. Therefore, for the oil discovery analysis we cannot strongly separately identify effects

for low-amenity vs. high-transportation-cost bins. This is less of an issue for the mineral

discovery analysis that follows, as less than half of the low-amenity treatment cells are also

high transportation cost. In any case, here the conclusion remains that effects are largest for

low-favorability counties.
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Figure 2: Heterogeneity in Population Dynamics of Oil-Discovery Counties.
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The graphs plot the average effects of oil discovery on log population density over time estimated from

Equation 1. 95% confidence intervals are included. The data is partitioned based on the 20th and 80th

percentile cutoffs into high, medium, or low amenity and transportation groups, and separate regressions are

run for each of the six groups. For reference, the shaded region is the confidence interval of the average

treatment effect.
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6.2 Mineral Discoveries

We next turn to population effects of mineral discoveries estimated from Equation (1) at the

cell level and with the modifications discussed in Section 3. Figure 3 plots the estimated

effects of mineral discoveries for the five decades before and after discovery. Specifically, it

plots the effect on the probability that a given cell will be populated by at least one person

if a mineral resource is discovered within 30 miles. A potential concern with identification of

the effect of discovery on population is that population growth in particular places may lead

to resource discovery (rather than the reverse). Figure 3 alleviates this concern by showing

that prior to discovery, conditional population for mineral-discovery areas is actually trending

down relative to non-discovery areas (though it is roughly flat in the two decades prior). Two

decades after discovery, treated cells are over 5% more likely to be populated. However, this

effect declines and is statistically insignificant after five decades.

Figure 3: Population effect of Mineral Discovery, 5 decades before and after
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The graph plots the average effects of a “world class” mineral discovery on the probability that a 1-km2 cell

within 30 miles of the discovery is populated. Effects are estimated using Equation 1. 95% confidence

intervals are included.

Figure 4 plots the estimated effects of mineral discovery when limiting the sample to each
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of the six amenity and transportation cost groups. Unfavorable locations experience positive

population effects after mineral discovery, particularly for those places with high transporta-

tion costs. After five decades, low amenity cells within 30 miles of a mineral discovery are

approximately 7% more likely to be populated while high transportation cost cells within 30

miles are 15% more likely to be populated. For moderately favorable locations, treated cells

are approximately 5% more likely to be populated two to four decades after mineral discovery,

with the effect disappearing after five decades. We observe similarly transient effects for mod-

erate transportation cost cells. Finally, in favorable locations, there is no evident population

boom after discovery but there is some evidence of a negative effect in four to five decades

after discovery. The negative results for these more favorable locations is likely a driver of the

boom-and-bust pattern we observe in the full-sample effects in Figure 3.

Overall, the pattern of geographic heterogeneity for minerals is broadly consistent with the

the evidence provided from the oil discoveries; locations with less favorable geography tend to

experience larger gains from economic booms than locations with more favorable geography.

However, the primary difference is that the positive population effects are not persistent out

to 50 years for mineral discoveries. There are several possible reasons for this. First, our

definitions of “significant” oil and mineral discoveries are not evaluated based on the same

measures of their importance. We classify significant oil discoveries as those with more than

100 million barrels of reserves, while we adopt the USGS’s qualitative definition of whether a

particular discovery is “world class.” The difference in average value of these resources at the

time of their discovery is an order of magnitude. As discussed in Section 5, the median oil

discovery has an in-situ value of $2.6B compared to $300m for minerals. Consistent with the

idea that more valuable resources generate larger population shocks, we illustrate in Figure

5 that larger oil discoveries (those above the median number of in-situ barrels discovered)

generate larger population effects.

There are also differences in the longevity of resource extraction. All oil discoveries in

our sample were still producing at some level in the year 2000 (70 years after initial average

discovery), while the median world-class mineral deposit in our sample had a 48-year mine

life. It could be the case that the larger and more persistent oil discovery effect is being
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Figure 4: Population Dynamics of 30 mile Mineral-Discovery Buffer, 5 decades before and
after
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The graph plots the average effects of a “world class” mineral discovery on the probability that a 1-km2 cell

within 30 miles is populated over time and is estimated by Equation 1. 95% confidence intervals are

included. The data is partitioned based on the 20th and 80th percentile cutoffs into high, medium or low

amenity and transportation groups, and separate regressions are run for each of the six groups. For

reference, the shaded region is the confidence interval of the average treatment effect.
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driven by the fact that these locations are still actively producing after 50 years, while the

mineral resources are, on average, depleted around this time. To test this hypothesis, we

find a subset of oil-rich counties that did experience some depletion effects. While we do

not observe annual production levels, we can observe extractive industry employment from

1969-2000 using Bureau of Economic Analysis data on employment by sector. In this period

of available data, there was a large, positive employment shock from 1975 to 1990 in response

to the oil embargo and other global geopolitical forces. All but 8 oil-rich counties in our data

saw their employment in the extractive sector, both in levels and per capita terms, increase

during this period. This boom was shared similarly in both older and more recently discovered

oil fields, and in larger and smaller fields. For the remaining 8 counties, we cannot say their

fields had been exhausted by this 1975-1990 period or even exhausted 50 years after discovery,

but we can say they experienced this price run-up much differently than similarly sized fields

discovered around the same time. If the persistence in the oil discovery effect was driven

purely by robust and continuing extraction or subsequent commodity booms, we would be

less likely to find such a persistent effect in these 8 counties. Figure A.9 shows the results

for our main event study analysis when restricting the treatment group to these 8 counties.

While the results are underpowered due to the small treatment group, they are suggestive of

persistent and positive effects. Fifty years after discovery in these 8 counties, the magnitude

of the treatment effect is similar to what we observe in the overall sample of counties.

These results are consistent with the idea that there may be more intrinsic differences

between oil and mineral resources in terms of their effects on development. As mentioned

above, the economic value of a typical oil field is much larger than that of a typical mineral

deposit. Further, there are differences in the labor requirements of the start-up and operating

periods of resource extraction, creating differences in the timing and intensity of labor demand.

There are also differences in the transportation infrastructure needed to move the commodities

to export markets.

It is also important to note that, whereas most oil discoveries are made in relatively flat

places, minerals like gold and silver are often found in rugged terrain (such as the Rockies and

Sierra Nevada mountain range – see the bottom panel of Figure A.1). An interesting aspect
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of our heterogeneous analysis is that we document persistent effects of mineral discoveries

for high transportation cost locations only. One somewhat speculative interpretation of this

finding is that mineral discoveries finance the construction of transportation infrastructure

such as roads, bridges, and railways. Such investments might be prohibitively expensive in

the absence of mineral discoveries, and so these places tend to remain persisently vacant. The

construction of transporation infrastructure related to resource extraction might be especially

important for the long run development of such places. Anecdotally, note that many ski

towns and resorts are located in or near historical silver or gold mines such as Alta and Snow

Bird, Utah, and Tahoe, California. Another popular ski town in Colorado (Telluride) was

even named after the telluride ores (gold and silver) that were previously extracted there. We

provide eviddence of this theory by estimating the effect of mineral discoveries on present-day

transportation infrastructure.

To do this, we again evaluate treatment effects at the 1-km2 cell level, and limit the

sample to cells in western states. We present average and heterogeneous treatment effects

based off of transportation cost separately. For completeness, we consider three different

outcome variables: 1) an indicator for the presence of a road measured in the year 2017,21 2)

road density (meters of road within a cell) in 2017, and 3) an indicator for the presence of

a railroad in 2017. For robustness, treatment cells are defined as those within five, ten, and

thirty kilometers from the point of discovery. We condition on indicators for medium and high

transportation cost and amenity bins, and for medium and high “inverse rail probability” bins

which parsimoniously and flexibly account for cell-level ruggedness and water coverage (i.e.,

the fitted values from Equation 3, which are discretized into three bins separated by the 20th

and 80th percentiles). We again cluster standard errors at the zip code level.

Across all three measures of transportation infrastructure, we see that the effect of mineral

discoveries in high transportation cost counties tend to be more pronounced than those in low

transportation cost counties, especially when treated cells are defined locally (e.g., using a five

or ten kilometer radius threshold rather than the thirty kilometer threshold). For example,

21Geospatial road density data provided at the 1-km2 cell level comes from the NOAA National Geophysical
Data Center, and is found on ArcGIS Online.
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from Table 1 in 2017, high transport cost cells within five kilometers of a mineral discovery

were roughly 9% more likely to have a road intersecting them than high transport cost cells

that were not in proximity to a historical discovery. Similar results are documented for road

density, and the presence of rail.

7 Robustness Checks

We carry out a battery of tests that highlight the overall robustness of the main findings.

Starting with the results for oil discoveries, we first consider the possibility that oil discoveries

generated significant spatial spillovers (as documented by Feyrer, Mansur and Sacerdote;

2017; James and Smith, 2020) which would cause treatment effects to be biased downward.

We address this concern by dropping all counties that are contiguous to treatments and re-

estimate our baseline set of equations. These results are given in Figure B.1. For the full

sample, fifty years after discovery, the average treatment effect is estimated to be 0.5, which is

nearly identical to that found using the full set of counties. The effects by favorability are also

very similar to before, suggesting the baseline results are not biased due to spatial spillovers.

Of clear concern is the idea that the timing of a discovery is endogenous to economic

development within the region. If oil fields are discovered as a result of population growth, our

results are potentially explained by reverse causality. We argue that this is unlikely affecting

our results, as first we note that pre-existing trends in the baseline event-study analyses are

largely insignificant, and second, to the extent that most major oil fields had been discovered

by the year 2000 (a fairly reasonable assumption), the treatment definition used in the cross-

sectional analysis is exogenous and based largely off of geological factors. In addition to these

arguments, we also examine whether estimated treatment effects are sensitive to the size of

the fields being discovered. More specifically, we re-estimate baseline estimation equation 1

for both “high” and “low” oil endowments, defined as being above or below the treatment

group median, respectively.22 While exploration and search effort are potentially endogenous

22Field size is estimated by summing cumulative production and estimated remaining reserves for fields from
the Oil and Gas Journal Databook. Total endowments are then calculated by summing together fields within
a county. When the same field is assigned to multiple counties, it is assumed that endowments are divided
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Table 1: Heterogeneous Effects of Mineral Discovery on Present-Day Infrastructure

Total Low Trans. Med. Trans. High Trans.

Roads 2017>0 (30 Mile Radii)

Coef. .0002 .018 .018 -.016
(Std. Err.) (.009) (.016) (.012) (.014)

Roads 2017>0 (10 Mile Radii)

Coef. .042*** .034* .056*** .038**
(Std. Err.) (.011) (.018) (.016) (.017)

Roads 2017>0 (5 Mile Radii)

Coef. .093*** .031 .114*** .093***
(Std. Err.) (.015) (.024) (.022) (.019)

Road Density 2017 (30 Mile Radii)

Coef. -8.79 -121.29 3.09 28.54
(Std. Err.) (26.515) (93.71) (33.64) (39.43)

Road Density 2017 (10 Mile Radii)

Coef. 71.29* -218.30 85.95* 103.97**
(Std. Err.) (38.66) (155.00) (51.04) (50.89)

Road Density 2017 (5 Mile Radii)

Coef. 214.36*** -263.91 286.50*** 205.46**
(Std. Err.) (58.22) (194.38) (85.80) (63.80)

Rail 2017>0 (30 Mile Radii)
Coef. .003* -.007 .0004 .011***

(Std. Err.) (.001) (.005) (.001) (.002)

Rail 2017>0 (10 Mile Radii)

Coef. .008*** .003 .0004 .012***
(Std. Err.) (.003) (.015) (.003) (.004)

Rail 2017>0 (5 Mile Radii)
Coef. .0125*** .028 .008 .009*

(Std. Err.) (.005) (.025) (.006) (.006)

N 2,752,848 550,508 1,651,756 550,584

Note: Each entry in the table is the estimated effect of being a treated 1-km2 cell. Standard errors clustered
by zip code are provided in parentheses below each estimate. Column headings (Total, Low Trans., etc.)
describe which cells are being used in the estimation. For example, “Low Trans.” gives the treatment effect
when limiting the sample to cells in the low transportation cost bin. The “Total” column gives the results
using all cells in the sample. Results are conditioned on amenity bin dummies, transportation cost dummies,
inverse rail probability dummies (see the discussion on transportation cost estimation), and state fixed effects.
S
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variables, conditional on discovering oil, whether a discovery is of a large or small field is

plausibly determined by chance. The results are given in Figure 5 below.

Figure 5: Population Dynamics for High and Low Oil Endowments
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Estimated average effects on log population density and 95% confidence intervals disaggre-
gated by high and low endowments. “Low” endowments are those below the median of the
treatment group and “High” endowments are above median.

Note that for both subsets of the treatment group, pre-existing trends are minimal. While

short and long-run treatment effects are positive for both groups, fifty years after discovery

population density is estimated to be roughly 90% greater in counties with high endowments

and just 30% greater in counties with lower endowments. Even if one attributed the estimated

effect of small discoveries purely to endogeneity, the “additional” effect of large discoveries is

significant (90%-30%=60%) and should be considered a lower bound on the effect of discover-

ing oil. Figures B.2 and B.3 give the heterogeneous effects by favorability for large and small

endowments and largely reinforce the idea that effects are larger for low amenity, high trans-

portation cost places. For example, fifty years after discovering a large oil field, population

density in low-amenity counties is 350% greater than the pre-discovery counterfactual (this

number is closer to 64% for small discoveries). There is no long-run effect of large or small

discoveries in high-amenity places.

Recently it has been shown that a two-way fixed effects difference-in-differences specifi-

cation in which there is variation in the timing of treatment recovers the average treatment

effect only when treatment effects are homogenous (Goodman-Bacon, 2018; Sun and Abra-

proportionally by county area.
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ham, 2020; Chaisemartin and D’Haultfoeuille,2020; Borusyak and Jaravel, 2017; Athey and

Imbens, 2018). These studies show that the traditional difference-in-differences estimator is

a weighted combination of all possible 2x2 difference-in-difference estimators in which a co-

hort with a certain treatment timing is compared to either a never-treated group or a treated

cohort with different timing. Unless treatment effects are homogenous over time, then com-

parisons with “already treated” cohorts become problematic and can cause biased estimates.

This being said, this issue is unlikely to create significant bias in our estimates because the

majority of the control group in our event study is never treated (recall that there are roughly

3,100 counties and only 231 discovered a major oil field), so the weights on the potentially

problematic 2x2 comparisons are inevitably small. Nonetheless, as a robustness check we use

the “interaction-weighted” estimator developed by Sun and Abraham (2020) to re-estimate

our baseline set of results for oil discoveries (STATA estimation command eventstudyinteract).

These results are provided in Figure 6 and, as expected, are similar to our baseline estimates.

Another possible concern with our finding that less favorable locations see larger effects is

the possibility that oil discoveries have similar population effects in terms of raw numbers of

people in all locations, but that low-favorability places have smaller initial populations, and

so experience larger percentage increases following discovery. While this scenario would not

change the overall conclusion that low-favorability places see larger relative impacts, it would

imply that this is a result of low starting population rather than amenities or transport costs

directly (note that this is less of a concern when examining mineral discoveries, because the

West was largely unpopulated with non-indigenous peoples prior to the first mineral discoveries

in the mid-1800s).

Of course in order for such a mechanical explanation to be the driver of our findings,

favorable locations that discover resources must have large populations not just in the present,

but at the time of resource discovery, while unfavorable locations must have small populations

at the time of resource discovery. Grouping oil-discovering counties by amenity value, these

counties had average populations at the time of discovery of 13,000 for low amenity, 30,000 for

medium amenity, and 26,000 for high amenity. For perspective, these averages correspond to
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Figure 6: Oil Discoveries: Interaction-Weighted Event Studies
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The graph plots the average effects of oil discovery on log population density over time using an

interaction-weighted estimator. 95% confidence intervals are included.
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the 28th, 62nd and 57th percentiles of county populations at discovery time.23 In other words,

these locations on average do not represent extreme cases on either side of the distribution,

nor do they represent particularly large or small populations in levels terms. Particularly,

medium and high amenity locations had quite similar populations in the discovery decade.

More formally, we also consider a specification of our model that controls for the inter-

actions of event-time indicators and log population density in 1870. For parsimony, in these

regressions, rather than separating by bins, we include interactions of event-time indicators by

the Z-scores of our amenity index or transportation cost measures (along with non-interacted

event-time indicators). These heterogeneous effects are given in Figure 7 and show that

counties with above-average amenity value (or below-average transportation cost) experience

smaller population gains resulting from oil discoveries, even after controlling for treatment

interacted with starting population. These results again reinforce our baseline conclusions

and quell concerns that our results simply reflect variation in initial population density across

high and low amenity places.

Figure 7: Interaction of Event Year and Z-Score of Favorability
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The graphs show the coefficients for event-time interacted with the z-scores for amenity index
and transport cost, conditional on the interaction of event-time and population density in the
year 1870 and the non-interacted event-time indicators. Because amenity value and transport
cost have been transformed to z-scores, these estimates are interpreted as the additional effect
of discovery given one additional standard deviation in amenity index or transportation cost.

To the extent that regional resource discoveries generate state-wide economic growth and

23More precisely, for a given discovery, we find the percentile of the county’s population compared to all
counties at the time of discovery, then average these percentiles over all treatment counties.
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development, one can argue that including state-by-year fixed effects is overly restrictive, as it

exploits only within-state variation in outcomes. We therefore estimate an additional model

that substitutes state-by-year fixed effects with year fixed effects. These results are nearly

identical to before and are provided in Figure B.4.

We further examine the robustness of the heterogeneous effects by favorability by alterna-

tively defining “high” and “low” favorability using 90% and 10% thresholds rather than 80%

and 20% as in the baseline specification. These results are given in B.5 and are quite similar

to our baseline results. We again document large treatment effects for low-amenity places,

smaller effects for moderate-favorability places, and no effect for high favorability places.

Turning to the results for mineral discoveries, recall that for the baseline specification

treatment, cells are chosen as those within thirty miles of a mineral discovery. Here, we let

this radius vary from five, to ten, to fifty miles. Using a five-mile radius and the full sample,

Figure B.6 shows that the average treatment effect is greater than in the baseline specification,

which uses a 30-mile radius. This makes some intuitive sense—if mineral discoveries attract

populations, and populations are more heavily concentrated near the mine, one would expect

larger treatment effects for smaller radii, though there are examples of boomtowns locating

farther away in the nearest flat land. However, in this particular case, note that the estimated

treatment effects for favorable locations, while somewhat erratic and imprecisely estimated,

are actually larger than those for unfavorable locations. Similar results are found using a ten

-mile radius (see Figure B.7). The results using a fifty-mile radius are more in line with the

baseline specification (see Figure B.8).

8 Conclusion

A growing literature estimates the short and long run effects of natural-resource production,

dependence, and discoveries (Michaels, 2011; Jacobsen and Parker, 2016; Muehlenbachs et al.

2015; Berman, et. al. 2017; Alcott and Keniston, 2017; Feyrer, Mansur and Sacerdote, 2017;

Matheis, 2016). While estimating short run effects is (relatively) straight forward, identifying

longer run, posterior effects of natural resources is more challenging and is often frustrated by
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various data limitations. Within the United States, because many oil and mineral deposits

were discovered in the late 1800s and early 1900s, observing initial conditions is not always

feasible.

We exploit a novel population dataset that allows us to estimate the long run (eg., 50

years) effect of such historical resource discoveries using a series of event studies. We also

explore heterogeneous effects based on the environmental amenities and extent of geographic

isolation of the discovery site, constructing novel measures of both. We theorize that a major

resource discovery plays a more important role in permanently populating an area if that place

is otherwise undesirable and unlikely to develop on its own. Highly desirable places—such as

those with moderate climates that are centrally located near major markets—on the other

hand, are likely to be populated even in the absence of major resource discoveries.

Empirically, we find that resource discoveries immediately, and in some cases permanently

elevate local populations. The effects are economically meaningful as well; averaged across

counties, fifty years after discovering oil, population density is roughly 65% greater than it

otherwise would have been. But among highly desirable counties with warm temperatures

and access to national and/or international markets, this effects falls to zero. For the most

undesirable counties this effect increases to 170%. And these results are enhanced when

evaluating the effects of oil fields that are above median size. For example, fifty years after

discovering a large field, population density in low-amenity counties is 350% greater than it

would have been in the absence of discovery.

Our analyses of oil discoveries is complimented by one of mineral discoveries. Among

other things, we find that within relatively flat terrain, mineral discoveries have no long run

effects on population growth. However, within rugged terrain, mineral discoveries play a more

important role, generating significant long run population growth and also contributing to the

contemporary set of transportation infrastructure.

Taken together, we show that the effects of a resource discovery depend on where the re-

source is discovered. We focus our attention on heterogeneities arising from environmental and

geographic characteristics, but other sources of heterogeneity likely exist. For example, lim-

ited work has been done on the joint role of historic shocks and institutional quality (Mehlum,

39



Moene, and Torvik (2006) is one notable exception), tax rates, environmental regulation, and

public policy more generally. Understanding these possible sources of heterogeneity is impor-

tant for designing policies to capture resource rents and transform temporary shocks into long

run economic gains. We hope that our paper helps to motivate this line of research.
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A Additional Tables & Figures

Figure A.1: Mineral and Oil Discoveries

(a) Oil Discoveries

(b) Mineral Discoveries

Note: Oil discoveries are recorded at the county level whereas mineral discoveries are recorded
by the latitude and longitude of the discovery site. Oil discovery locations come from the EIA.
Mineral discoveries data come from USGS Mineral Resource Data System.
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Figure A.2: Timing of Major Oil Field and Mineral Deposit Discoveries
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Note: Oil fields are major if they are larger than 100 million barrels. Mineral

discoveries are major if they were qualitatively determined by the US Geological

Survey to be of “world class significance”. For mineral discoveries, if discovery date

was missing, year of first production was used. Oil discovery dates come from the Oil

and Gas Journal. Mineral discoveries data come from USGS Mineral Resource Data

System.

Figure A.7: Population Dummy by Cell Over Time in Western US

1850 1880
1910

Note: 1-km2 cells are populated if they have more than one person living in them, according to the estimates

by Fang & Jawitz (2018).
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Figure A.3: Temperature, Sunshine, Humidity & Soil Productivity

Legend
Jan 50-68.8 F
Jan 10-20 F
Jan 40-50 F
Jan 30-40 F
Jan 20-30 F
Jan 1.1-10 F

(a) Average January Temperature

Legend
July 90-93.7 F
July 80-90 F
July 70-80 F
July 60-70 F
July 55.5-60 F

(b) Average July Temperature

Legend
Sunny Days>250
250>Sunny Days>225
225>Sunny Days>200
200>Sunny Days>175
175>Sunny Days>150
150>Sunny Days>125
125>Sunny Days>100
100>Sunny Days>75
75>Sunny Days>50
50>Sunny Days>48

(c) Average January Sunlight

Legend
70<Humidity<80
60<Humidity<70
50<Humidity<60
40<Humidity<50
30<Humidity<40
20<Humidity<30
14<Humidity<20

(d) Average Humidity

(e) Soil Productivity

Source: Figure from authors compiled from data from various sources. Data on temperature, humidity, and

sunlight come from the USDA Natural Amenities Scale. Total January sunlight hours is measured as an

average from 1941-1970. County-level soil quality data come from Schaetzl, Krist, and Miller (2012).
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Figure A.4: Predicted Population (Amenity Index)

(a) Amenity Index (2000)

(b) Population Density (2000)

Note: Panel (a) gives predicted populated levels for each county, which serves as the proxy
for exogenous environmental amenity. Panel (b) gives actual population density for the year
2000. For both figures, green indicates a large population density, yellow indicates medium
population density, and red indicates low population density.
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Figure A.5: Predicted v. Actual Rail Network in Four Case Studies 

 

 

(a) Santa Fe to Salt Lake

 

 

 

(b) Denver to Las Vegas 

 

 

(c) Boise to Helena

 

 

 

(d) Boise to Sacramento

Note: The current actual rail network is depicted in blue. The predicted paths based on cell-
level measures of terrain ruggedness and water coverage are given in red. These are overlaid
on a topographical map. These cases show a high-fidelity to the actual rail network from
our method in panels (b) and (c), but our method also rightly ignores the endogenous city
development and predicts more direct routes in panels (a) and (c). See Section 4.2 for details.
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Figure A.6: Estimated Transport Cost

(a) Transport Cost by Cell (1850 cities)

(b) Transport Cost by Cell (1900 cities)

Note: Estimated transportation cost from each 1-km2 cell to the nearest national or interna-
tional market location. Warmer colors indicate higher costs to reach markets. Markets are
defined by either a pre-existing city of 5000 or more population, a railroad built by 1870, or a
navigable waterway. Cities which reached 5000 people by 1850 or 1900 are denoted by points.
Railroads in 1870 and marine highways (major, navigable waterways) are given by black and
blue lines, respectively.
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Table A.1: Summary Statistics for Oil-Rich and Poor Counties

Population Median Income Manufacturing

N 1890 2000 2000 1890 2000

All Counties 3105 19.98 88.24 35.19 2.94 13.35

Had Oil Discovery
Yes 204 8.71 140.71 32.66 1.08 8.10
No 2849 20.90 84.89 35.37 3.04 13.73

Oil-Poor with Amenity:
High 562 30.21 122.29 35.72 2.74 16.29
Medium 1685 22.98 87.24 35.67 3.15 14.55
Low 602 6.40 43.37 34.22 2.98 8.10

Oil-Poor with Transportation Cost:
High 540 4.48 37.75 31.00 1.06 7.64
Medium 1719 18.49 70.90 35.34 2.78 15.06
Low 590 42.98 168.77 39.45 4.95 14.42

Oil-Rich with Amenity:
High 14 16.37 459.18 34.81 1.46 11.17
Medium 117 12.29 163.84 33.02 1.37 9.69
Low 73 1.51 42.57 31.66 0.35 4.44

Oil-Rich with Transportation Cost:
High 73 1.98 42.29 31.62 0.38 5.09
Medium 113 12.37 207.71 32.85 1.37 9.66
Low 18 13.01 119.27 35.67 1.66 8.60

Summary statistics for outcome variables in 2000 and 1890 (income data are not available in
1890) are presented for all counties, counties with and without oil discoveries, and counties
with and without oil discoveries by amenity and transportation cost favorability. N is the
number of counties that fall into a particular category. First Discovery is the average first
year that an oil or mineral discovery is made for counties in a group. Population is the average
population in 1000s of persons. Median income is measured in 1,000s of USD. Manufacturing
is the percentage share of employment in manufacturing.

53



Table A.2: Summary Statistics for Cells Near Mineral Discoveries

N (1850) Population (1850) Population (1950)

Had Mineral Discovery
Yes 291,471 .024 .339
No 2,388,223 .009 .332

Mineral-Poor with Amenity:
High 484,715 .020 .531
Medium 1,419,191 .006 .316
Low 484,317 .011 .178

Mineral-Poor with Transportation Cost:
High 435,772 .005 .282
Medium 1,439,652 .008 .294
Low 512,799 .017 .483

Mineral-Rich with Amenity:
High 55,298 .079 .438
Medium 171,661 .016 .357
Low 64,512 0 .206

Mineral-Rich with Transportation Cost:
High 81,943 0 .337
Medium 177,498 .014 .310
Low 32,030 .146 .510

Note: N is the number of cells that fall into a particular category. Population is the percent of cells within a
category with a population greater than zero. Mineral rich cells are those within thirty miles of a mineral

discovery.

Figure A.8: Effects of Terrain on Rail Probability

(A) Topography (B) Water
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(A) Rail Probability Effect by Elevation SD Percentile. (B) Rail Probability Effect by Water Percentage.
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Figure A.9: Event Study with 8 Boom-Ending Treatments Only
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Event study of oil discovery on population using a subsample of 8 counties which did not see employment

booms during the 1970’s oil-boom period. For the time frame where employment data are available by sector

(1960-2000), these counties saw precipitous declines in oil-sector employment, indicating their local boom

was transient.

B Robustness
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Figure B.1: Oil Discovery Results, Bordering Counties Excluded

Full Sample
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The graphs plot the average effects of oil discovery on log population density over time estimated

from Equation 1, with control counties bordering treatment counties excluded from the sample.

95% confidence intervals are included. 56



Figure B.2: Oil Discovery Results, Low Reserves Treatments
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The graphs plot the average effects of oil discovery on log population density over time estimated

from Equation 1. 95% confidence intervals are included. Only below median oil deposits are used

in the estimation. The data is partitioned based on the 20th and 80th percentile cutoffs into high,

medium or low amenity and transportation groups.
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Figure B.3: Oil Discovery Results, High Reserves Treatments
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The graphs plot the average effects of oil discovery on log population density over time estimated

from Equation 1. 95% confidence intervals are included. Only above median oil deposits are used

in the estimation. The data is partitioned based on the 20th and 80th percentile cutoffs into high,

medium or low amenity and transportation groups.
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Figure B.4: Oil Discovery Results, Year FEs

Full Sample
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The graphs plot the average effects of oil discovery on log population density over time estimated

from Equation 1, with year fixed effects included instead of state-by-year fixed effects. 95%

confidence intervals are included. 59



Figure B.5: Oil Discovery Results, Alternate Bins
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The graphs plot the average effects of oil discovery on log population density over time estimated

from Equation 1. 95% confidence intervals are included. The data is partitioned based on the

10th and 90th percentile cutoffs into high, medium or low amenity and transportation groups,

rather than 20th and 80th percentile cutoffs.

60



Figure B.6: Mine Discovery Results, Using a 5-mile Treatment Threshold

Full Sample
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The graphs plot the average effects of mineral discovery on log population density over time

estimated from Equation 1. 95% confidence intervals are included. The data is partitioned based

on the 20th and 80th percentile cutoffs into high, medium or low amenity and transportation

groups. Treatment cells are those within 5 miles of a discovery rather than 30 miles as in the

baseline specification.
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Figure B.7: Mine Discovery Results, Using a 10-mile Treatment Threshold

Full Sample
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The graphs plot the average effects of mineral discovery on log population density over time

estimated from Equation 1. 95% confidence intervals are included. The data is partitioned based

on the 20th and 80th percentile cutoffs into high, medium or low amenity and transportation

groups. Treatment cells are those within 10 miles of a discovery rather than 30 miles as in the

baseline specification.
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Figure B.8: Mine Discovery Results, Using a 50-mile Treatment Threshold

Full Sample
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The graphs plot the average effects of mineral discovery on log population density over time

estimated from Equation 1. 95% confidence intervals are included. The data is partitioned based

on the 20th and 80th percentile cutoffs into high, medium or low amenity and transportation

groups. Treatment cells are those within 50 miles of a discovery rather than 30 miles as in the

baseline specification.
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