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Shaming, stringency, and shirking: Evidence from food-safety inspections

Moral hazard is common in consumer product settings whenever producers have more information

about the quality of their products than consumers do. Regulators have responded to this market failure

through various regulatory approaches including direct regulation of product quality (e.g., through FDA’s

drug approval process) and indirect solutions like information disclosure (e.g., FTC’s energy efficiency

labeling requirements). Information disclosure regulations might require the provision of either continuous

or discrete information about product quality. Discrete quality information (e.g., traffic-light labels)

might be more easily understood by consumers but may also discourage producers from attaining quality

scores that greatly surpass the thresholds associated with each labeled category (Shewmake and Viscusi,

2015; Ito and Sallee, 2018). Furthermore, if producers see thresholds as unattainable, they may make

very little effort to improve along the relevant quality dimensions. Thus, in designing an information

disclosure requirement, regulators face a tradeoff between eliminating the moral hazard stemming from

the information asymmetry and providing actionable information to consumers.

In this paper, I explore a unique context in which producers faced a series of regulatory regimes target-

ing product quality through mandatory disclosure of discrete quality ratings, a type of policy sometimes

referred to as “naming and shaming”. The context is a series of three regulatory changes undertaken

by the U.S. Department of Agriculture (USDA) regarding disclosure of information about Salmonella in

chicken carcasses at slaughter establishments.1 This paper documents the effects of categorization, pub-

lication of information about categories, and a later tightening of categorization and disclosure criteria

on outcomes of tests for Salmonella.

My results provide evidence that establishments respond to incentives created by the categorization

and disclosure program, sometimes by shirking or attaining worse food-safety outcomes. When an es-

tablishment exceeds the maximum number of positive samples required to attain a given performance

category, its subsequent test performance worsens. However, this shirking effect is mitigated by the

publication of information about test results. Furthermore, when establishments have more leeway with

respect to the thresholds, their performance on Salmonella tests worsens. I also show that a tightening

of standards in 2011 had a bifurcating effect wherein establishments with middling performance (prior

to the policy change) tended to improve while establishments that performed poorly (prior to the policy

change) tended to perform even worse, suggesting another form of shirking.

This paper demonstrates that chicken processors responded to the incentives created by the inspection

program by reducing effort related to food safety when the stakes were low. The results bear resemblance

1Salmonella is a genus of bacteria typically present in the intestines of birds and other animals. Meat and poultry
can become contaminated with Salmonella during slaughter if they come into contact with feces or the digestive
tract or through cross contamination (Rasschaert et al., 2008). Salmonella in poultry is a major cause of food-borne
illness in the United States, with an economic cost of up to $3.6 billion per year according to the following estimates
and calculations. Hoffmann et al. (2015) report that Salmonella is the pathogen with the greatest economic cost of
associated food-borne illnesses, causing up to $9.49 billion (in 2013 dollars) in losses from illnesses, hospitalizations,
and deaths per year (at the upper end of the authors’ 90% credible interval). Painter et al. (2013) estimate that
10.1 to 29.2% of the cases of illness caused by Salmonella enterica are attributed to poultry. .292 × $9.49 billion
= $2.77 billion in 2013 dollars, or $3.56 billion in July 2022 dollars. Scharff (2020) provides a similar estimate.
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to studies reviewed by Dranove and Jin (2010), which found that hospitals and schools responded to the

introduction of quality ratings by focusing on healthier patients and ignoring the sickest; with gaming

behavior such as finding ways to avoid reporting scores of poorly performing students; and by teachers

cheating on standardized tests (see also Dee et al., 2019). Similarly, Houde (2018) finds evidence that

the energy efficiency of refrigerators is bunched just below the threshold necessary to obtain Energy Star

certification, and Shewmake and Viscusi (2015) find that home builders strategically incorporate “green”

features to achieve green certifications. Other related papers have studied the effects of disclosure on

outcomes in the context of restaurant health-inspection scores (Jin and Leslie, 2003, 2009; Bederson

et al., 2018; Dai and Luca, 2020), drinking water (Bennear and Olmstead, 2008), and workplace safety

violations (Johnson, 2020). Ollinger and Bovay (2020) find that, in the same context as this paper, public

disclosure improved Salmonella test results. In section 5, I confirm the earlier finding but also show that

a later tightening of disclosure standards resulted in worse average Salmonella test results, a result driven

by the worst-performing establishments.

The design of the USDA Salmonella Verification Testing Program generates incentives for establish-

ment operators to reduce effort around Salmonella control, i.e., to shirk. Under this program, USDA Food

Safety and Inspection Service (FSIS) inspectors randomly pull chicken carcasses off the processing line

to test them for Salmonella. From 2006 to 2015, if establishments exceeded certain numbers of positive

samples within a “sample set” of 51 carcasses sampled over 51 consecutive operating days, they were des-

ignated “Category 2” or “Category 3”. Under some policy regimes, Category 2 and 3 establishments have

been listed on a public USDA website. Compared with a regime with disclosure of continuous information

about Salmonella test results, this creates clear incentives for moral hazard, specifically a reduction in

effort around controlling Salmonella. Under the discrete threshold disclosure system based on sample

sets, we would expect to see establishment operators reduce effort around Salmonella control in at least

three cases. The first case is when the establishment exceeds the public-disclosure threshold before the

end of a sample set. The second case is when the establishment has had very few positive samples, and it

would therefore be impossible to exceed the threshold no matter how many positive samples there were

among the remaining samples. Third, when categorization is not yet determined, we would also expect

to see a correlation between leeway with respect to the thresholds and Salmonella test performance (i.e.,

more leeway, worse test performance).

This paper employs carcass-level data on Salmonella test results over 1999–2017 for all federally

inspected chicken-slaughter establishments to test hypotheses about shaming and moral hazard.2 First,

using a regression discontinuity (RD) approach, I demonstrate that: (1) When establishments fail to meet

categorization thresholds but these failures do not subject them to public disclosure, Salmonella test per-

formance worsens, suggesting that establishment operators reduce effort related to controlling Salmonella.

(2) When establishments fail to meet thresholds and are therefore subjected to public disclosure, there

is no statistically significant change in Salmonella test performance. In other words, the shirking effect

appears to be mitigated under public disclosure. There is little evidence that establishments shirked after

2For ease of exposition, data from May 2015 through December 2017 are analyzed only in Appendix C.
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sustained good test performance ensured they would avoid public disclosure.

If chicken buyers have information about establishments’ categorization status but not more detailed

information about the results of FSIS Salmonella inspections, one would expect operators to exert effort to

avoid poor categorization, but then shirk after poor performance makes the better categories unattainable.

However, the apparent shirking is most widespread when categorization was not publicly disclosed; public

disclosure mostly seems to have mitigated this type of shirking behavior. One potential explanation

is that private buyers would have demanded additional information about the results of Salmonella

inspections. That is, some buyers may have required that establishments provide documentation of their

category status before purchasing chicken, even before category status was publicly disclosed by FSIS.

Once FSIS publicly disclosed the categorical information, perhaps some buyers demanded additional,

detailed information on inspection results that would have limited establishment operators’ incentives to

shirk.

Second, I document that when establishments have more leeway with respect to the thresholds, their

performance on Salmonella tests worsens. The relationship between proximity to the thresholds and test

outcomes is strong whether or not there is a threat of public disclosure, but tends to be stronger when

the thresholds are associated with disclosure.

Third, I use a regression discontinuity in time approach to demonstrate the effects of each policy change

on average Salmonella test results. I show that the introduction of public disclosure in 2008 reduced the

overall rate of positive Salmonella samples by about 55 percent. A tightening of both categorization and

disclosure standards in July 2011 had a bifurcating effect. Establishments that performed poorly prior to

July 2011 tended to perform even worse after the tightening of standards. The results suggest a fourth

type of moral hazard outcome not related to current performance with respect to the thresholds. Instead,

it appears that some establishment operators exerted little effort to achieve the tighter thresholds, given

their history of test performance. On the other hand, middling establishments for which the thresholds

might have been more easily achievable responded to the incentives by improving performance. The net

effect of the tightening of standards in 2011 was to increase overall Salmonella rates by about 140 percent.

The safety of poultry processing remains relevant in legislation and policymaking today. In July 2020,

bills were introduced into both chambers of the U.S. Congress to limit line speeds in chicken-slaughter

establishments. According to some lawmakers, increased line speeds have negative implications for both

worker health and food safety.3 If increased line speeds are indeed associated with worse Salmonella

outcomes, perhaps improved monitoring and disclosure of Salmonella test results could offset those welfare

losses. In addition, in October 2021, FSIS formally announced a program to investigate future regulatory

actions with the goal of reducing Salmonella in poultry by 25%.4

Section 1 provides additional background information on the chicken-slaughter industry and federal

food-safety inspections. Section 2 describes the data and provides descriptive statistics. Section 3 demon-

3See https://www.booker.senate.gov/news/press/booker-introduces-bill-to-boost-safety-and-protect-
meatpacking-workers-from-covid-19.

4See https://www.usda.gov/media/press-releases/2021/10/19/usda-launches-new-effort-reduce-salmonella-
illnesses-linked-poultry.
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strates the effects of known categorization on Salmonella test outcomes using an RD design. Section 4

explores the effects of proximity to thresholds when categorization is unknown. Section 5 uses an RD in

time approach to evaluate the effects of each policy change on average Salmonella test outcomes. Sec-

tion 6 concludes. Appendices provide a description of the data-cleaning procedure additional validation

and robustness tests, and describe results on shaming and shirking for two additional policy regimes that

were in place over 2015–2017.

1. Background on the chicken-slaughter industry and food-safety inspections

Approximately nine billion meat chickens (“broilers”) are produced each year in the United States, typi-

cally grown on farms under contract with slaughter and processing companies (MacDonald, 2015; USDA,

2019). In 2017, there were more than 32,000 farms growing meat chickens in the United States (USDA,

2019), and 226 federally inspected chicken-slaughter establishments.5 Under the Poultry Products In-

spection Act, the USDA’s Food Safety and Inspection Service (FSIS) is responsible for inspecting poultry

and poultry products that enter interstate commerce. Buyers of chicken from chicken-slaughter estab-

lishments typically include grocery retail chains and restaurants, or distributors from whom retailers and

restaurants buy. Often, chicken-slaughter establishments will produce chicken that retail consumers see

as any of several different brands, including store brands.6

Under the Salmonella Verification Testing Program, from 1999 to 2015, FSIS inspectors assigned

ratings or categories to chicken-slaughter establishments based on the number of positive samples during

recent “sample sets” (in FSIS terminology) of 51 carcasses sampled on 51 consecutive operating days.

At first, this rating was essentially binary (establishments with 12 or fewer positive samples out of 51

met the standard) and ratings were not published. Minor sanctions were imposed in the event of three

consecutive sample sets with more than 12 positive samples. Starting in 2006, FSIS undertook several

policy changes related to testing of chicken carcasses for Salmonella and public disclosure of results. The

series of policy changes is summarized below and in figure 1.

Starting on May 30, 2006, establishments that failed to meet the regulatory standard of 12 or fewer

positive samples in a 51-sample set were designated Category 3. Establishments with 7 to 12 positive

samples were designated Category 2; and establishments with 6 or fewer positive samples were designated

Category 1. The new category designations were conveyed to firms privately until March 28, 2008, when

5During the period covered in this paper (1999 to 2017), there were 301 federally inspected chicken-slaughter
establishments, but 75 of these exited the industry or opted for state inspection during the period.

6For example, in 2014 the Foster Farms establishment located in Livingston, California produced chicken prod-
ucts for the FoodMaxx, Kroger, Safeway, Savemart, Sunland, and Valbest brands, in addition to the Foster Farms
brand. See https://www.fsis.usda.gov/sites/default/files/import/Foster-Farms-recalled-products.pdf.
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the names and locations of Category 2 and 3 establishments were posted publicly on the FSIS website.7

An establishment’s information remained on the website until the establishment attained Category 1

status.

On July 1, 2011, the standard was tightened so that establishments with 6 or more positive samples

out of 51 were designated Category 3 and establishments with 3 to 5 positive samples were designated

Category 2. Starting on the same date, only the names and locations of Category 3 establishments were

published. Put differently, the threshold for disclosure was reduced from 7 positive samples to 6, out

of 51. Establishments would remain on the public list until they attained Category 1 or 2 status. This

standard remained in place through May 5, 2015.

As seen in figure 2, the aggregate share of samples positive declined sharply over the period during

which policy changes were being implemented, from 16.2% of samples positive in 2005 to 2.4% of samples

positive in 2015, or a decline of nearly 1.4 percentage points per year. Since changes in technology and

buyer requirements for food safety were taking place concurrently with FSIS policy changes (Park et al.,

2014; Page, 2018), a careful empirical approach is needed to identify the effects of disclosure policies on

producer behavior with respect to Salmonella control.

2. Data and descriptive statistics

Through a Freedom of Information Act (FOIA) request, I obtained data from FSIS on all test results

from the Salmonella Verification Testing Program for broilers from January 4, 1999 to January 25, 2018.

The data set also includes the address and name of establishments and snapshot information on the

FSIS district and circuit to which establishments belonged, FSIS size classifications (very small, small,

and large), and indicators for whether they processed other types of meat and active operation. All

of the data on establishment characteristics reflects characteristics at the time of the data pull. The

data set I obtained from FSIS does not include any indication of the groups of 51 samples (“sample

sets”) used to determine regulatory compliance and category designations over 1999–2015. I am able to

assign observations into sample sets by identifying lengthy temporal gaps between observations. I drop

observations that are not likely to have been assigned correctly into sample sets based on this procedure,

as including these observations would generate noise.8

I now provide some evidence that establishment operators were attentive to the thresholds and may

have adjusted their operations to avoid exceeding the thresholds. In figure 3, I plot histograms of the

number of positive samples per sample set for each of the four policy periods over 1999–2015. Establish-

7The names of Category 2T establishments were also posted publicly starting March 28, 2008. Category 2T
establishments were those that had been designated Category 2 or 3 based on the second-most-recent sample set
but had improved to Category 1 performance in the most recent sample set. Effectively, the introduction of the
Category 2T designation meant that a Category 2 or 3 establishment’s name would be listed until it had completed
two consecutive sample sets with 6 or fewer positive samples. The introduction of the Category 2T designation
would not have changed the nature of incentives related to thresholds, but would have raised the stakes associated
with a single “Category 2” outcome.

8In essence, if the assignment into sample sets generates sets of many fewer or many more than 51 observations,
I drop the sets. Details on the sample-set assignment procedure are given in Appendix A.
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ment operators were unable to precisely manipulate the number of positive samples per set because the

presence of Salmonella bacteria in chicken carcasses cannot be precisely controlled and because carcasses

were pulled out of processing lines at random to be sampled.9 Nevertheless, these histograms provide

some evidence that establishment operators adjusted their operations in response to the thresholds and

their positions relative to the thresholds. In particular, for most thresholds, there are many more sample

sets with one or two positive samples fewer than the threshold than with one or two positive samples more

than the threshold. Indeed, the thresholds tend to be associated with discontinuous drops in the number

of sample sets at each level, when binning observations this way. For example, during the 2006–08 period,

about 24.0% of sample sets had 3 or 4 positive samples, and 21.0% had 5 or 6, while only 8.4% had 7 or 8

and 7.0% had 9 or 10. The sharp drop in number of sample sets at the 6-positive-sample threshold, and

relatively flat distribution further from the threshold, suggests that establishment operators exerted effort

to stay at or below the threshold but relaxed efforts once above the threshold. Similar results are evident

at the 12-positive-sample regulatory threshold in the 1999–2006 period and the Category 2/3 threshold in

the 2006–08, 2008–11, and 2011–15 periods. Note, however, that during the periods in which disclosure

of Salmonella categorization was in effect, there is no evidence of bunching at the maximum number

of positive samples allowed for non-disclosure (i.e., 6 positive samples in 2008–11; 5 positive samples in

2011–15); establishment operators could not control Salmonella precisely enough to yield such results.

3. Effects of known categorization on Salmonella test outcomes

In this section, I use a regression discontinuity (RD) model to demonstrate how Salmonella test re-

sults changed when establishments crossed thresholds within a sample set, thus ensuring a particular

categorization. My hypothesis is that to the extent that categorization and public disclosure matter, es-

tablishment operators relax efforts around Salmonella control after either (1) too many positive samples

result in crossing a threshold into a worse category (Category 2 or 3) or (2) sufficiently many negative

samples ensure a better categorization outcome (Category 1 or 2). Effects of crossing thresholds are

analyzed separately for each policy regime because under each policy regime, establishment operators

faced somewhat different incentives related to controlling Salmonella. In particular, the information that

would be disclosed upon exceeding the 5-, 6-, and 12-positive-sample thresholds varied under the various

policy regimes.

3.1. Empirical approach

A natural and intuitive approach to studying the effects of crossing the discrete 5-, 6-, and 12-positive-

sample thresholds on Salmonella test performance would be to use the number of positive samples within

the sample set as a running variable in an RD design. However, such an approach only works when the

9An FSIS policy in place since 1998 states that inspectors must select a random chill tank, a random time, and
a predetermined location for collecting the carcass samples, then identify a carcass at that location, then count five
carcasses back or ahead, and collect that sixth carcass for sampling. See https://www.fsis.usda.gov/sites/

default/files/media_file/2021-02/Salmonella_Analysis.pdf.
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cutoffs are crossed from below (i.e., when an establishment has an additional positive sample). Consider

the following example. If 5 positive samples is the relevant threshold (as it was in 2011–15), and an

establishment has had zero positive samples through 45 tests within a sample set, another negative sample

would guarantee that the establishment will have no more than 5 positive samples out of the 51 samples

in the set. In this case, the incentives for good Salmonella control as they relate to categorization and

public disclosure could not be captured by using the number of positive samples as the running variable.

In addition, an RD design with the number of positive samples as the running variable would not reflect

the differential effects on effort of positive samples near the beginning of a sample set relative to positive

samples near the end. For example, incentives differ when an establishment has 5 positive samples among

the first 10, and when it has 5 positive samples among the first 50.

Given these considerations, the running variable used in the RD approach described in this section is

the share of the remaining samples (within the sample set) that may be positive if the establishment is

to achieve a given categorization (either Category 1 or 2). I term this variable leewayC, or leeway with

respect to category threshold C, and formally define it as

(1) leewayCijk =
C −

∑i−1
l=1 Yljk

52− i
,

where C ∈ {2, 5, 6, 12} is the maximum number of samples permitted to be positive within a sample set,

to achieve the given category; i is the test number within sample set j at establishment k; and
∑i−1

l=1 Yljk is

a count of the number of positive observations within sample set j at establishment k, within the interval

[1, i− 1].10 The denominator 52 − i is a count of the total number of observations that still need to be

collected to complete the sample set, including i. I exclude any observations with i > 51, as these extra

samples would not have affected categorization.11

I use the following regression equation for the RD model to investigate the effects of crossing category

thresholds on Salmonella test results:

(2) Yijk = α+ β0D0ijk + β1D1ijk + f (leewayCijk) + γ1tijk + γ2i+ γ3sj−1,k + εijk,

where Yijk is a binary variable representing the results of test i for Salmonella within sample set j

at establishment k (positive = 1), D0ijk = 1 {leewayCijk ≥ 0}, D1ijk = 1 {leewayCijk ≥ 1}, f (·) is a

polynomial function that can take on different values on either side of each cutoff (c ∈ {0, 1}); tijk is the

sample collection date; sj−1,k is establishment k’s share of samples positive in sample set j − 1; and εijk

is the residual. Following Calonico et al. (2014), Cattaneo et al. (2020b), and Cattaneo et al. (2020c),

I use sharp RD analysis with local linear regressions, triangular kernel weighting, bandwidths chosen

to minimize mean squared errors on either side of both cutoffs, and robust nonparametric confidence

intervals.

10Figure 4 helps provide some intuition for the empirical approaches in this section and section 4.
11As discussed in Appendix A, FSIS inspectors sometimes collected more than 51 samples but the extra samples

were not used for categorization.
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3.2. Results: Effects of known categorization on Salmonella test outcomes

The estimates from the RD models strongly suggest that establishment operators relaxed efforts around

Salmonella control when categorization outcomes were known to establishments but when the catego-

rization would not result in disclosure. However, in most periods, when an establishment’s categorization

would result in disclosure, the shirking effect was not evident.

Panel A of table 1 shows estimates of the RD coefficients at the leewayC = 0 and leewayC = 1

cutoffs for the thresholds C associated with regulation or categorization but not with disclosure, and

panel B shows estimates of the same RD coefficients for the thresholds C associated with disclosure. The

RD coefficients reflect the discontinuous effect of the running variable as it increases in value and passes

each of the cutoffs. So, the interpretation of the coefficients is as follows: negative coefficients on the

leewayC = 0 cutoffs imply that positive test results are less likely when leewayC ∈ [0, 1) than when

leewayC < 0; positive coefficients on the leewayC = 1 cutoffs imply that positive test results are more

likely when leewayC ≥ 1 than when leewayC ∈ [0, 1). Interpretations of specific results in table 1 follow.

During the initial 1999–2006 period, when the category system had not yet been introduced and FSIS

did not impose sanctions until establishments failed to meet the 12/51 threshold on three consecutive sam-

ple sets, crossing the leeway12 = 0 and leeway12 = 1 thresholds had no effect on subsequent Salmonella

test performance.

During the 2006–08 period, when categorization was known only to the establishment (no disclosure),

establishments had worse results after crossing the thresholds that ensured Category 2 and 3 outcomes.

In particular, establishments were 6.1 percentage points more likely to have positive Salmonella test

outcomes after failing to meet the 6/51 threshold necessary to be denoted Category 1, and 7.9 percentage

points more likely to have positive samples after failing to meet the Category 2 standard (see table 1,

panel A, columns 3 and 5). The sharp effects of crossing these thresholds suggests that operators exerted

effort to stay below the thresholds and then substantially reduced effort once the thresholds were exceeded.

During the 2008–11 policy period, the names of both Category 2 and 3 establishments were posted

on the FSIS website. The results in table 1, panel B, columns 1–4, show that the cutoff values of leeway6

and leeway12 had statistically insignificant effects on subsequent Salmonella test performance.12

During the 2011–15 policy period, the thresholds associated with Category 2 and 3 were tightened so

that Category 1 consisted of establishments with two or fewer positive samples out of 51 and Category 3

consisted of establishments with six or more. Under these new, more stringent thresholds, only the

names of Category 3 establishments were publicly disclosed. During 2011–15, establishments were 8.9

percentage points more likely to have positive samples after failing to attain Category 1 status (table 1,

panel A, column 7). So, similar to the 2006–08 period, establishment operators apparently exerted effort

to attain Category 1 but relaxed after failing to attain that standard, despite categorization status not

being published for Category 1 and 2 establishments. But as in the 2008–11 period, the cutoff values

associated with the Category 2/3 (disclosure) threshold did not have statistically significant effects on

Salmonella test performance (table 1, panel B, columns 5–6).

12The insignificant effects are robust to the polynomial and kernel choices, as seen in appendix tables B1 and B2.
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I now summarize the results in table 1. First, when establishments fail to meet thresholds but are not

subject to public disclosure, Salmonella test performance typically worsens (panel A, columns 3, 5, and 7).

Second, in most cases, when establishments fail to meet thresholds that subject them to public disclosure,

there is no statistically significant change in Salmonella test performance (panel B, columns 1, 3, and 5).

Third, establishment operators do not relax efforts after sustained good performance on Salmonella tests

ensures they will avoid public disclosure (panel B, columns 2, 4, and 6).

These results suggest strongly that before public disclosure was implemented, establishment operators

paid attention to the thresholds and exerted effort to achieve better categorization, and then shirked after

failing to achieve the targeted thresholds. Yet, after the thresholds began to trigger public disclosure,

there was no statistically significant evidence of shirking. One possible explanation for these outcomes

is that buyers may have demanded additional information about Salmonella test results, beyond what

was publicly disclosed. Perhaps prior to public disclosure, buyers demanded information about suppliers’

categorization, and perhaps after categorization was publicly disclosed, buyers began to seek additional

information or give suppliers extra scrutiny that limited the moral hazard incentives. Whatever the

reason, the shirking outcomes seen before public disclosure were not evident after the introduction of

disclosure.

3.3. Validity of the RD design and robustness tests

In most contemporary studies that use RD approaches (see Lee and Lemieux, 2010; Calonico et al., 2014;

Cattaneo et al., 2020b), two empirical tests are used to allay concerns that the running variable may be

manipulated by agents (in this case, establishment managers or FSIS inspectors). One test shows that

the running variable is smooth around the cutoff(s), that is, as-good-as-randomly distributed on either

side of the cutoff(s) within a narrow band. This is typically tested using a density test as described by

McCrary (2008); a recent update is proposed by Cattaneo et al. (2018). The second test shows that

baseline covariates are also randomly distributed around the cutoff value(s) of the running variable by

running an RD model on the baseline covariates. Neither of these tests are appropriate in my setting

because of unique features of the data, described below.

Given that the running variable used in the regressions in this section is a ratio with some values

(especially 0 and 1) much more common than others, density tests may yield spurious rejections of the

null hypothesis (i.e., smoothness). To demonstrate this, I simulate 10,000 values of the leewayC variables

for each test i ∈ {1, . . . , 51} according to a Bernoulli distribution with the probability of a positive sample

equal to the mean share of samples positive in each of the four policy periods. The rddensity test

proposed by Cattaneo et al. (2018) suggests that the running variable has discontinuous density at the

cutoffs (p < 0.001) in nearly all cases using both the simulated and real data.13 For another comparison of

smoothness in the running variable, I use t-tests to compare the ratios of the number of observations with

leewayC = 0 and leewayC = 1, over the number of observations with leewayC < 0 and leewayC ∈ [0, 1],

13For some of the cutoff and policy-period combinations, the rddensity test does not produce estimates using
the simulated data because there are not enough observations on one side of one threshold.
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across my real and simulated data. I find that the real data are somewhat smoother than the simulated

data at leewayC = 0 (p = 0.097) and almost exactly as smooth at leewayC = 1. Given that the running

variable is inherently lumpy even in the simulated data, I conclude that the distribution of the running

variable is as good as random around the cutoffs.

The second common way to test for manipulation of the running variable is to run an RD model on

baseline covariates. A finding that the baseline covariates are discontinuous at the cutoffs may imply

that agents are able to manipulate their status with respect to the cutoffs and that manipulation ability

is somehow correlated with baseline characteristics of establishments. Because the running variable used

in the regressions in this section is a ratio that takes on certain values much more frequently than

other values, RD estimates of the effects of the actual cutoffs and many placebo cutoffs on the baseline

covariates are statistically significant across many policy periods. I suggest that the unusual nature of

the running variable makes a manipulation test based on baseline covariates inappropriate. Instead, I

rely on a practical approach suggested by Eggers et al. (2015) and de la Cuesta and Imai (2016) to

argue that manipulation is unlikely. Since agents cannot determine the values of their running variables

with “extreme precision” (de la Cuesta and Imai, 2016), it is unlikely that manipulation is done on the

basis of predetermined covariates.14 Furthermore, visual examination of the histograms of the number of

positive samples per completed sample set in figure 3 suggests that manipulation through post-test fraud

is also unlikely. When disclosure was in place (starting in 2008), the density of cumulative positive tests

per sample set was clustered well below the disclosure thresholds, with no discontinuity just below the

thresholds. The increased density of cumulative positive tests further below the thresholds suggest that

establishment managers exerted (legitimate) effort to stay below the thresholds, and not that fraudulent

behavior helped them stay below the thresholds.15

Cattaneo et al. (2020b) recommend using local linear regressions in the running variable and triangular

kernels as in table 1, but some readers may be interested in seeing whether the RD results are robust to

alternative specifications. Because the alternative specifications are not the recommended best-practice

models, emphasis should be placed on where the various models reach similar conclusions rather than on

where they diverge. Appendix tables B1 and B2 use quadratic polynomials and Epanechnikov kernels,

respectively, but are otherwise identical to the specifications in table 1. One consistent conclusion emerges

from all three specifications: establishments’ test results worsened after they failed to meet the Category 1

standard in 2006–08, before the introduction of public disclosure. This is a clear example of moral hazard

or shirking, and public disclosure of category information appears to have reduced shirking.

In appendix table B3, I present results for regressions parallel to those in table 1 but using placebo

cutoff values for the running variables (leewayC). The time periods and thresholds shown here represent

14Recall that the denominator of the running variable is test number within the sample set, which cannot be
controlled by the establishment managers. Furthermore, establishments had relatively poor ability to precisely
control their share of positive tests and stay below the disclosure thresholds. Hence, neither the numerator nor the
denominator of the running variable can be (precisely) controlled.

15In a private and candid conversation, an FSIS employee told me they did not believe establishment managers or
FSIS inspectors would have been able to fraudulently manipulate test results or select individual “clean” carcasses
for inspection. See also footnote 9.
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the statistically significant estimates from table 1. The placebo cutoff values are three multiples of 0.05

in either direction from c = 0. In appendix table B3, four of the 18 RD coefficients are statistically

significant with p < 0.1, but only one of these has the “correct” sign in the sense that it is consistent

with the estimates for c = 0 in table 1 and the expectations about incentives for shirking that motivate

the analysis in this section. Given the large number of placebo thresholds tested, we can conclude that

the placebos do not yield meaningful effect estimates.

In summary, the validity of my RD approach depends on institutional features that ensure the run-

ning variable is not manipulable. My key finding, that establishments’ test performance worsened after

sustained poor performance in the pre-disclosure period, is robust to alternative RD specifications, and

regressions using placebo cutoffs do not raise concerns about the main findings.

4. Proximity to regulatory thresholds and Salmonella test outcomes

In this section, I evaluate the relationship between proximity to thresholds and Salmonella test perfor-

mance, when multiple category outcomes are still possible. The analysis demonstrates that Salmonella

test outcomes were significantly worse in every policy period when establishments had more leeway with

respect to the category thresholds.

4.1. Empirical approach

As in the previous section, the dependent variable is the binary Salmonella test result. The key explana-

tory variable in these regressions is again leewayC. Larger values of leewayC indicate that a larger share

of remaining samples could test positive for Salmonella. Therefore, if the Salmonella category assignment

matters to establishment operators, then Salmonella control efforts should increase when there is less

leeway—when the value of leewayC is smaller. To estimate the relationship between leewayC and test

outcomes when multiple category outcomes are possible, I use only observations with leewayC ∈ [0, 1).

I estimate the relationship between leewayC and Salmonella test outcomes under each policy regime

using a series of linear probability models, according to equation 3:

(3) Yijk = α+ βleewayCijk + γ1i+ γ2sijk + ukm(ijk) + εijk,

where Yijk is a binary variable representing the results of test i for Salmonella within sample set j at

establishment k (positive = 1); sijk is the share of samples positive within the current sample set (over

tests 1, . . . , i− 1); ukm(ijk) represents establishment–month–year fixed effects; and εijk is the residual.

Admittedly, there are some shortcomings in the identification strategy described here, given that

leewayCijk is (mechanically and empirically) negatively correlated with the share of samples positive sijk

and positively correlated with the test number i. However, it is essential to control for recent test results

at each establishment, given that average test results vary widely across establishments. Establishment

operators cannot (precisely) control any of these three regressors, so leewayC is plausibly exogenous. By

including sijk and i as regressors, I can tease out effects of proximity to the threshold on Salmonella
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control efforts. Moreover, my empirical results are generally consistent whether or not I include sijk as a

regressor.

4.2. Results: Proximity to thresholds and Salmonella test outcomes

Table 2 presents results from regressions of the form described by equation 3, which demonstrate the effect

of proximity to the thresholds on Salmonella test outcomes. Table 2 demonstrates that in all periods,

when the value of leewayC was larger, carcasses were more likely to test positive for Salmonella. In other

words, establishments controlled Salmonella better when it was necessary to ensure a better categorization

outcome. These results hold regardless of whether the policy of public disclosure of Category 2 and 3

outcomes was in place. I now review the results in more detail.

Panels A and B of table 2 report results for the regressions with the leeway variables defined with

respect to the Category 1/2 and 2/3 thresholds, respectively.16 From 1999 to 2006, when categorization

had not yet been introduced but 12 positive samples out of 51 was a regulatory requirement, Salmonella

test outcomes were worse when establishments were closer to both the 6- and 12-positive-sample thresh-

olds. When the leeway12 value was 10 percentage points higher, the probability of a positive test result

was 4.88 percentage points higher (p < 0.001; panel B, column 2). The elasticity of the share of samples

positive with respect to leeway12 was 1.39, calculated using the mean share of samples positive and the

mean value of leeway12.

From 2006 to 2008, when categorization was reported privately, the relationship between proximity to

the 12-positives threshold and Salmonella test outcomes was slightly stronger than in the previous period.

When the leeway6 value was 10 percentage points higher, the probability of a positive test result was

3.39 percentage points higher (p < 0.001; elasticity = 0.74; panel A, column 4), and when the leeway12

value by 10 percentage points higher, the probability of a positive test result was 3.82 percentage points

higher (p < 0.001; elasticity = 1.52; panel B, column 4).

Public disclosure of the names of both Category 2 and 3 establishments from 2008–11 further strength-

ened the relationship between proximity to the thresholds and test results. During this period, when the

leeway6 value was 10 percentage points higher, the probability of a positive test result was 2.28 percent-

age points higher (p < 0.001; elasticity = 0.86; panel A, column 6), and when the leeway12 value was

10 percentage points higher, the probability of a positive test result was 4.11 percentage points higher

(p < 0.001; elasticity = 2.46; panel B, column 6).

Over 2011–15, the standards were tightened and only the names of Category 3 establishments were

posted. Correspondingly, the relationship between the leeway value associated with the Category 1/2

threshold and test outcomes was weaker over 2011–15. When the leeway2 value was 10 percentage points

higher, the probability of a positive test result was 0.91 percentage points higher (p < 0.001; elasticity

= 0.43; panel A, column 8). The relationship between the leeway value associated with the Category 2/3

threshold and test outcomes was also highly significant but much weaker than in the 2006–08 and 2008–11

periods: when the leeway5 value was 10 percentage points higher, the probability of a positive test result

16All discussion of results in table 2 references the even-numbered columns, as they are the preferred specifications.

12



was 0.96 percentage points higher (p < 0.001; elasticity = 0.84; panel B, column 8).

What should we take away from all of these results? To put it most simply, incentives matter.

Salmonella test results were better when they needed to be. Proximity to thresholds mattered whether

or not there was a threat of public disclosure, but the relationship between proximity and test outcomes

tended to be stronger (in an elasticity sense) when the thresholds were associated with disclosure.

5. Effects of policy changes on Salmonella test outcomes

Regulators face tradeoffs when designing requirements that producers disclose information about product

quality. Public disclosure may mitigate moral hazard, as seen in section 3. But if the thresholds associated

with categorization and disclosure are so stringent that many producers cannot meet the thresholds at

low cost, these producers may significantly reduce effort irrespective of their proximity to the thresholds—

another type of moral hazard. In this section, I show that while the introduction of public disclosure in

2008 reduced the average share of samples positive, the tightening of standards in 2011 raised the average

share of samples positive. The latter result is driven by the worst-performing establishments.

5.1. Empirical approach

Here, I use a regression discontinuity in time (RDiT) approach (Hausman and Rapson, 2018) to evaluate

the effects of each policy change on average Salmonella test results. As in section 3, I use sharp RD

analysis with local linear regressions, triangular kernel weighting, bandwidths chosen to minimize mean

squared errors on either side of each cutoff, and robust nonparametric confidence intervals (Calonico et al.,

2014; Cattaneo et al., 2020b,c). The regression equation is as follows:

(4) Yikt = α+ β1D1t + β2D2t + β3D3t + f(t) + εikt.

The running variable is the sample collection date and the three dates of policy changes are the cutoffs.

The binary dependent variable Yikt is the Salmonella test outcome for sample i at establishment k on

date t (positive = 1), Djt = 1 {t ≥ cj} for each of the three cutoffs cj , f (·) is a polynomial function that

can take on different values on either side of each cutoff, and εikt is the residual. The RD bandwidths are

selected separately for each date of policy change to minimize mean squared error on each side of each

cutoff date, as recommended by Cattaneo et al. (2020b). As discussed by Hausman and Rapson (2018),

tests for smoothness in density of the running variable are inappropriate to establish the validity of RDiT

designs.

5.2. Results: Effects of policy changes

Panel A of table 3 presents results from the RDiT model described by equation 2 using all observations

from all establishments. The results suggest that the introduction of public disclosure in 2008 led to a

5.1 percentage point reduction in the probability of positive Salmonella samples. Given that 9.2 percent
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of samples tested positive for Salmonella during the 177 days before the policy change (i.e., the MSE-

optimal bandwidth), the introduction of public disclosure reduced Salmonella levels by 55 percent. The

other policy changes, in 2006 and 2011, had statistically insignificant effects on average test outcomes.

Including observations from establishments that were active in earlier periods but not in later periods

may bias the results in panel A if, for example, establishments with worse food safety were more likely

to exit the industry for reasons unrelated to FSIS inspections and disclosure policies. Panel B drops all

establishments that were listed as “inactive” at the time the data set was created. In this way, panel B

achieves better balance of (unobserved) covariates than panel A. The results in panel B suggest again that

the introduction of public disclosure in 2008 led to a large (4.8 percentage point; 55 percent) reduction

in the probability of positive Salmonella samples, but that the subsequent tightening of the thresholds in

2011 led to an even larger (6.8 percentage point; 139 percent) increase.17 There are a couple of different

possible interpretations of the estimated increase in positive Salmonella samples starting in 2011, when

removing establishments that ever exited. One is that many establishments with worse performance

may have exited around the time of the 2011 policy change. If these establishments had similarly poor

performance before and after the standards change, keeping them as part of the analyzed sample would

mask changes in average Salmonella outcomes. The other possibility is that many operators of worse-

performing establishments remained active but may have given up on trying to meet the now more

stringent standard necessary to avoid disclosure.

To explore the first of these two possible interpretations, I query the data and find that ten estab-

lishments exited during the 2011–15 policy period. On average, these establishments had 8.8 percent of

samples test positive for Salmonella during this policy period, as compared with 4.0 percent for all other

establishments (p < 0.0001 for t-test for difference in means). However, only three of the ten ever reached

the 6-sample threshold necessary to be listed as Category 3 during the 2011–15 period. So, while the

establishments that exited during 2011–15 had worse Salmonella test results on average, it is not clear

that establishments exited because of the increased stringency that began in 2011.

The latter possible interpretation, that operators gave up on trying to meet the now more stringent

standard, appears to be more plausible. Table 4 shows the estimated RDiT effect of the 2008 and 2011

policy changes, splitting the samples by establishment-level average Salmonella test results over 2006–08

and 2008–11, respectively.18 The 2008 policy change is estimated to have reduced the share of samples

positive for establishments at each performance level, although the effect is only statistically significant

for those with average test results equivalent to Category 1. Establishments responded to the 2011 policy

change differently depending on their food-safety records. Establishments that had an average of more

than 5 out of 51 (about 9.8 percent) positive samples during the 2008–11 period (corresponding to the

2011–15 Category 3 threshold) had a 17.7 percentage point (111 percent) increase in the likelihood of

positive samples at the time of the 2011 policy change. Meanwhile, establishments with average test

17Panel B uses different bandwidths than panel A, again by minimizing mean squared error on each side of each
cutoff date. Percent changes are again calculated using the share of samples positive within the MSE-optimal
bandwidth before the policy changes as the baselines.

18All results described in the rest of this section use the same data set as panel B of table 3, dropping all
establishments that ever exited.
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results during 2008–11 that would place them in the new Category 2 (more than 2, and no more than

5 positive samples out of 51) had a 3.9 percentage point decrease in positive samples at the time of the

policy change. As stated above, the overall effect was to greatly increase the share of samples positive, by

6.8 percentage points or about 139 percent, among establishments that remained active through January

2018.

To recap, the introduction of public disclosure in 2008 decreased the rate of positives by about

55 percent. When only considering establishments that remained active until 2018, the tightening of

standards in 2011 more than doubled the rate of positives, a result driven by the worst-performing

establishments. Whereas in prior periods, the incentive to shirk only had effects once establishments

crossed the disclosure threshold, after 2011 some establishments reduced effort even before crossing the

threshold—another form of moral hazard. It is clear that while the initial public disclosure policy was

successful in improving the average rate of positive Salmonella samples, the next policy change introduced

new moral hazard incentives, worsened test outcomes, and more than offset the earlier improvement.

6. Summary and conclusion

Using carcass-level data on USDA inspections for Salmonella in chicken carcasses from 1999 to 2015, I

demonstrate several ways in which chicken-slaughter establishments responded to incentives created by

the inspection, categorization, and disclosure policies. First, using a regression discontinuity approach, I

demonstrate that when failing to meet thresholds does not subject establishments to public disclosure,

Salmonella test performance worsens following failures. Public disclosure of categorization mitigates

the shirking effect. One possible explanation is that buyers demanded that potential suppliers provide

additional information about Salmonella test results, beyond what was publicly disclosed. (In appendix

C, I demonstrate that under the more stringent disclosure policy in place in 2015 and 2016, establishment

operators also relaxed efforts after sustained good test performance ensured they would avoid public

disclosure.)

Second, I document that when two or more categorization outcomes are possible and establishments

have more leeway with respect to the thresholds, their performance on Salmonella tests worsens.

Third, the initial public disclosure policy in 2008 reduced the average rate of positive Salmonella

samples by about 55 percent, but the subsequent tightening of standards in 2011 led some establishments

to considerably decrease efforts around Salmonella control and increased the average rate of positive

samples by 140 percent. The worst-performing establishments drove the overall decline in performance

after the 2011 tightening of standards, a result I attribute to another form of moral hazard or shirking.

The empirical results provide some insights about the design of information disclosure policies, es-

pecially disclosure of discrete (categorical) information. As has been demonstrated in other contexts,

inspected entities have incentives to achieve better categorization but may shirk and achieve worse qual-

ity if they do not meet categorical thresholds. In this particular context, shirking was apparent when

categorical information was conveyed privately to slaughter establishments but not when the categorical

information was posted publicly. Thus, one policy lesson is that if categorization is used, the categorization
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outcomes should be made public.

A second policy lesson is that disclosing categorical information about quality does not incentivize all

producers to make effort to improve quality. The tightening of standards in 2011 resulted in worse aver-

age Salmonella test outcomes. Some establishment operators apparently judged the new non-disclosure

standard too stringent to attain and gave up on trying. In some settings, disclosing continuous (rather

than discrete or categorical) information about quality or imposing financial penalties or other sanctions

for very poor performance may be necessary to incentivize quality improvements.

There are some limitations to this study, naturally. The formal tests for manipulability of the running

variable in the RD models on categorization fail because of the lumpy nature of the running variable.

Also, the RD coefficient estimates in section 3 are not always robust to different specifications, such as

using quadratic polynomials in the running variable or Epanechnikov kernels. The identification strategy

used in section 4 to study the relationship between leeway and test results when two or more categories

were possible may not permit causal claims. There are some drawbacks to the data set I obtained

from FSIS, too. It has very few time-varying covariates that can be used in any of the regressions, and

there is some uncertainty about the sample sets I reconstructed for this analysis. Nonetheless, the paper

shows convincingly that slaughter establishments responded to both well-designed and perverse incentives

created by the FSIS testing and disclosure system.
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Cattaneo, Matias D, Roćıo Titiunik, and Gonzalo Vazquez-Bare. 2020c. “Analysis of regression
discontinuity designs with multiple cutoffs or multiple scores.” Stata Journal, forthcoming.

Dai, Weijia, and Michael Luca. 2020. “Digitizing disclosure: The case of restaurant hygiene scores.”
American Economic Journal: Microeconomics, 12(2): 41–59.

de la Cuesta, Brandon, and Kosuke Imai. 2016. “Misunderstandings about the regression disconti-
nuity design in the study of close elections.” Annual Review of Political Science, 19 375–396.

Dee, Thomas S, Will Dobbie, Brian A Jacob, and Jonah Rockoff. 2019. “The causes and con-
sequences of test score manipulation: Evidence from the New York Regents Examinations.” American
Economic Journal: Applied Economics, 11(3): 382–423.

Dranove, David, and Ginger Zhe Jin. 2010. “Quality disclosure and certification: Theory and
practice.” Journal of Economic Literature, 48(4): 935–63.

Eggers, Andrew C, Anthony Fowler, Jens Hainmueller, Andrew B Hall, and James M
Snyder Jr. 2015. “On the validity of the regression discontinuity design for estimating electoral effects:
New evidence from over 40,000 close races.” American Journal of Political Science, 59(1): 259–274.

Hausman, Catherine, and David S Rapson. 2018. “Regression discontinuity in time: Considerations
for empirical applications.” Annual Review of Resource Economics, 10 533–552.

Hoffmann, Sandra Ann, Bryan Maculloch, and Michael Batz. 2015. “Economic burden of major
foodborne illnesses acquired in the United States.” Economic Information Bulletin No. 140, United
States Department of Agriculture, Economic Research Service.

17
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Figure 1: Policy regimes and dates of implementation

Notes: FSIS Salmonella testing began prior to 1999 and is still ongoing. Additional, later, policy
changes are discussed in Appendix C.
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Figure 2: Monthly average rate of Salmonella samples positive, with fitted OLS regression
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Figure 3: Histograms of the number of positive samples per sample set, by policy period
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each policy period. Vertical lines represent the regulatory threshold (until 2006) and the category
thresholds (starting in 2006).
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Figure 4: Motivating the analysis of moral hazard
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Notes: This figure is intended to explain the incentives for establishments to control Salmonella
relative to the leeway variables. When leeway ≥ 1, incentives to control Salmonella are weak,
because the establishment may have 100% of remaining samples test positive and still be
categorized the same way. When leeway < 0, incentives are also weak because even if none of the
remaining samples test positive, the establishment will still fail to achieve the threshold
associated with the better categorization. When 0 ≤ leeway < 1, incentives decrease with leeway
because with more leeway, establishments may have a higher share of remaining samples test
positive and still achieve the threshold associated with the better categorization.
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Table 1: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards
Years 1999 to 2006 2006 to 2008 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.043 −0.021 −0.061 0.046 −0.079 0.026 −0.089 0.006
Robust p-value 0.656 0.709 0.000 0.373 0.001 0.412 0.005 0.467
95% CI (lower limit) −0.11 −0.24 −0.21 −0.09 −0.54 −0.06 −0.14 −0.01

(upper limit) 0.07 0.16 −0.06 0.03 −0.14 0.14 −0.03 0.02
Observations 23969 5594 13520 14287 10397 2396 17174 19160
Left bandwidth 0.53 0.13 1.29 0.99 0.75 0.17 0.14 0.95
Right bandwidth 0.13 2.33 0.31 2.84 0.47 2.13 0.95 1.05

Panel B: Cutoffs associated with disclosure
Public disclosure

Policy regime Public disclosure w/ tighter standards
Years 2008 to 2011 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5

(1) (2) (3) (4) (5) (6)

LeewayC ≥ c 0.024 0.015 0.155 −0.024 −0.013 0.001
Robust p-value 0.436 0.200 0.660 0.582 0.672 0.270
95% CI (lower limit) −0.13 −0.09 −0.21 −0.10 −0.11 −0.04

(upper limit) 0.06 0.02 0.33 0.05 0.07 0.01
Observations 11056 13813 9228 2495 8378 21453
Left bandwidth 0.80 0.29 0.24 0.48 0.66 1.00
Right bandwidth 1.00 2.45 0.20 1.90 0.14 2.23

Notes: Each pair or quartet of columns represents regressions using observations from the policy regimes beginning and ending in the
indicated years. For sample sets that span the dates of policy change, all observations are included in the later policy period. All
regressions are local linear RD regressions with triangular kernels, using leewayC as the running variable, as described in the text.
Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata (Cattaneo et al., 2020c),
clustering on establishment using nearest-neighbor estimation for the variance-covariance estimator. Bandwidths are chosen to minimize
mean squared error on either side of each cutoff. All regressions control for sample collection date, test number within sample set, and
the share of samples positive in the establishment’s prior sample set.
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Table 2: Effects of proximity to category thresholds on Salmonella test outcomes, 1999–2015

Policy regime No categorization Categorization (private) Public disclosure Tightened standards
Years 1999 to 2006 2006 to 2008 2008 to 2011 2011 to 2015

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A
Leeway6 (1999 to 2011) or Leeway2 (2011 to 2015) 0.430 0.358 0.413 0.339 0.256 0.228 0.108 0.0915

(0.027) (0.026) (0.041) (0.042) (0.029) (0.030) (0.018) (0.017)
Test number, current sample set -0.000944 -0.000768 -0.00197 -0.00155 -0.00226 -0.00221 -0.000286 -0.000223

(0.00037) (0.00041) (0.00052) (0.00061) (0.00052) (0.00058) (0.00023) (0.00025)
Share of samples positive, current sample set -0.718 -0.915 -0.712 -0.623

(0.036) (0.092) (0.097) (0.083)
Observations 49073 47868 15386 15056 15392 15051 23972 23448
Elasticity 0.70 0.59 0.90 0.74 0.97 0.86 0.50 0.43

Panel B
Leeway12 (1999 to 2011) or Leeway5 (2011 to 2015) 0.563 0.488 0.461 0.382 0.448 0.411 0.110 0.0965

(0.029) (0.030) (0.043) (0.048) (0.051) (0.053) (0.016) (0.016)
Test number, current sample set -0.00589 -0.00553 -0.00580 -0.00495 -0.00647 -0.00641 -0.00118 -0.00113

(0.00049) (0.00054) (0.00073) (0.00091) (0.00092) (0.0010) (0.00030) (0.00033)
Share of samples positive, current sample set -0.720 -0.905 -0.671 -0.658

(0.036) (0.087) (0.092) (0.082)
Observations 50796 49591 14652 14322 14381 14040 24086 23562
Elasticity 1.60 1.39 1.84 1.52 2.68 2.46 0.96 0.84

Notes: Panel A demonstrates the effects of proximity to the Category 1 thresholds (i.e., leeway) on Salmonella test outcomes; Panel B the effects of
proximity to the Category 2 thresholds. Horizontally, each pair of columns represents regressions using observations from the policy regimes
beginning and ending in the indicated years. For sample sets that span the dates of policy change, observations are included as part of the later
policy period. All regressions use establishment–month–year fixed effects. Standard errors, clustered by establishment, are given in parentheses.
Elasticities reported are the elasticities of the share of samples positive with respect to leewayC, calculated using the mean share of samples positive
and the mean value of leewayC. Observations are included only if leewayC ∈ [0, 1).
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Table 3: Effects of policy changes on average Salmonella test outcomes

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011

(1) (2) (3)

Panel A: All establishments included
t ≥ c 0.020 −0.051 0.058
Robust p-value 0.506 0.008 0.108
95% CI (lower limit) −0.04 −0.10 −0.02

(upper limit) 0.07 −0.02 0.16
Observations 17230 8537 6271
Left bandwidth 386 177 252
Right bandwidth 183 267 202

Panel B: Establishments that ever exited excluded
t ≥ c 0.031 −0.048 0.068
Robust p-value 0.211 0.018 0.026
95% CI (lower limit) −0.02 −0.09 0.01

(upper limit) 0.10 −0.01 0.15
Observations 16746 7912 5555
Left bandwidth 371 194 204
Right bandwidth 265 271 232

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running variable,
as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata
(Cattaneo et al., 2020c). Bandwidths are chosen to minimize mean squared error on either side of each cutoff.
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Table 4: Heterogeneous effects of policy changes on average Salmonella test outcomes

Average pre-period Salmonella test performance equivalent to Category 1 Category 2 Category 3
(1) (2) (3)

2008 policy change (c = 3/28/2008)
t ≥ c −0.038 −0.057 −0.047
Robust p-value 0.028 0.159 0.737
95% CI (lower limit) −0.08 −0.13 −0.30

(upper limit) −0.00 0.02 0.21
Observations 5222 2592 389
Left bandwidth 207 244 183
Right bandwidth 232 371 259

2011 policy change (c = 7/1/2011)
t ≥ c 0.037 −0.039 0.177
Robust p-value 0.275 0.081 0.030
95% CI (lower limit) −0.04 −0.10 0.02

(upper limit) 0.13 0.01 0.38
Observations 5549 3505 1632
Left bandwidth 266 210 240
Right bandwidth 487 358 222

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running variable,
as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata
(Cattaneo et al., 2020c). For the 2008 policy change, column (1) uses observations from establishments with an average of no
more than 11.8 percent positive samples (equivalent to ≤ 6/51) during the 2006–08 period; column (2) uses observations from
establishments with more than 11.8 percent but no more than 23.5 percent (equivalent to ≤ 12/51) during 2006–08; column (3)
uses observations from establishments with more than 23.5 percent positive samples. For the 2011 policy change, column (1)
uses observations from establishments with an average of no more than 3.9 percent positive samples (equivalent to ≤ 2/51)
during the 2008–11 period; column (2) uses observations from establishments with more than 3.9 percent but no more than
9.8 percent (equivalent to ≤ 5/51) during 2008–11; column (3) uses observations from establishments with more than
9.8 percent positive samples.
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Appendix A: Details on data-cleaning procedure

The data set I obtained from FSIS does not include any indication of the sample-set groupings that were

used to determine regulatory compliance and category designation over 1999–2015, and FSIS did not

provide further guidance on this issue. Inspection of the data reveals clear patterns of 51 samples being

collected over a short period, followed by a gap (often, approximately one year) before another set of

51 samples. However, it is clear that inspectors often collected slightly more and occasionally slightly

fewer than 51 samples. FSIS personnel confirmed that inspectors were supposed to collect samples until

results from 51 tests were available, which explains the frequent appearance of 52 to 56 samples over a

brief period, followed by a gap. FSIS also sometimes terminated collection before reaching 51 samples,

if a threshold was certain to be exceeded. After some preliminary data cleaning to eliminate duplicate

observations, I assign observations into sample sets by identifying lengthy gaps between observations

while maximizing the number of sample sets with 51 observations. Specifically, I identify the start of

a new sample set as occurring when the gap between observations was at least x times as long as the

average gap over the previous 51 observations, where x is chosen for each policy period as the integer

that maximizes the number of sample sets with 51 observations. This method generates sample sets with

lengths reasonably close to the expected length: at least 80% of all sample sets in each of the regulatory

periods have 50 to 56 observations. To eliminate noise that would be generated through mis-assigning

observations to sample sets, for the main analysis of sections 3 and 4, I only include observations from

sample sets of length [n, ..., N ], where n and N are the minimum and maximum sample-set lengths such

that at least 1% of sample sets have lengths n and N . Note again that the 51-sample sets were eliminated

effective May 6, 2015.
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Appendix B: Robustness and placebo tests

This appendix provides the results of various robustness and placebo tests described in the text.

Effects of known categorization: Robustness and placebo tests

As described in section 3, the key RD results presented in table 1 use linear polynomials with triangular

kernels as recommended by Cattaneo et al. (2020b). In appendix tables B1 and B2, I also provide results

using quadratic polynomials for the running variable and linear polynomials with Epanechnikov kernels

to demonstrate the robustness of significant results from the main specifications. Although the results in

table B1 and B2 are not entirely consistent with those in table 1, the finding that establishment operators

shirked prior to public disclosure (i.e., over 2006–08) is robust to alternative specifications.

Table B3 presents the results of RD models that use placebo cutoffs near the c = 0 cutoffs that yield

significant estimates in table 1. As discussed in the main body of the paper, only one of the 18 cutoffs

in table B3 is statistically significant and with the correct sign (i.e., a negative sign), and this estimate

is only marginally significant (p = 0.058). In conclusion, the placebo cutoffs do not raise concerns about

the validity of the main results.

Effects of policy changes: robustness tests

Here I present the results of robustness tests relevant to the RDiT design discussed in section 5. For

RDiT approaches to analysis of policy changes, Hausman and Rapson (2018) recommend a few additional

robustness tests. First, as recommended by Cattaneo et al. (2020a) for RD designs where the data have

many “mass points”, I collapse the data set and use the daily share of samples positive, across all

establishments, as my dependent variable. The results, in panel A of table B4, essentially conform with

the results in panel B of table 3: the introduction of public disclosure in 2008 led to a 4.5 percentage point

decrease in the share of samples positive, while the tightening of standards in 2011 led to a 6.3 percentage

point increase. In this specification, the 2006 introduction of the categorization system is also estimated

to have led to a statistically significant 3.4 percentage point increase in the share of samples positive.

The result for 2006 is of the same sign as the insignificant result shown for that year in table 3, but is of

larger magnitude.

Second, I employ a “donut” approach as recommended by Barreca et al. (2011) to ensure that

Salmonella sampling dates were not subject to manipulation around the dates of the policy changes,

which might have occurred if sampling dates were misreported or establishments briefly shut down before

or after policy changes. These results are again similar to the main results in table 3. The donut specifica-

tions, removing all observations within 1 to 7 days on both sides of policy changes, yield somewhat larger

estimated effects of the 2008 policy change (a 4.9 to 5.8 percentage point decrease in the share of samples

positive) and somewhat smaller estimated effects of the 2011 policy change (a 5.5 to 6.7 percentage point

increase) than the main specification. Panel B of appendix table B4 shows results for the RDiT regression
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with all observations within 7 days of the policy changes removed. In all of the donut specifications, the

2006 policy change is estimated to have insignificant effects on the share of samples positive.

Third, I drop all observations belonging to sample sets that span two policy periods. Under the policy

regimes in place through 2015, category status was assigned on the basis of sample sets as they were com-

pleted; incomplete sample sets were not reset at the time of the policy changes. When I drop observations

from sample sets that span policy periods, the estimated RDiT effects change somewhat: the introduction

of disclosure in 2008 resulted in a 5.1 percentage point decrease in the share of samples positive (though

not statistically significant), while the 2011 tightening of standards led to a 13.1 percentage point increase

(p = 0.004). The 2006 policy change had an insignificant effect.

While the various specifications yield somewhat different point estimates, the sign and magnitude

of the estimates are fairly consistent. The introduction of mandatory disclosure in 2008 resulted in a

significant improvement in average Salmonella test results, roughly a 55 percent reduction in the share

of samples positive. Perversely, though, the tightening of standards in 2011 resulted in a significant

worsening of test results, more than doubling the share of samples positive.

As another robustness test, I use several sets of placebo dates of policy changes. Each policy change

was preceded by an announcement in the Federal Register about the scheduled policy change. In Panel A

of appendix table B5, I use the dates of the relevant Federal Register announcements as the cutoffs. I

find that Salmonella test results did not change discontinuously at the dates of the announcements. In

Panels B through E of appendix table B5, I use placebo dates 120, 240, 360, and 480 days before the

actual policy changes. Under the null hypothesis, with 12 placebo cutoff values, one placebo would be

expected to have p ≤ 0.083. In appendix table B5, the lowest p-value is 0.094. We can therefore conclude

that the placebo effects are the consequence of random variation and that the estimated effects of the

policy changes in table 3 are valid.
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Table B1: Effects of known categorization on Salmonella outcomes—robustness to alternative specifications

Panel A: Cutoffs not associated with disclosure, quadratic polynomials, triangular kernels
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards
Years 1999 to 2006 2006 to 2008 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.032 −0.120 −0.051 −0.043 −0.116 0.100 −0.029 −0.012
Robust p-value 0.547 0.108 0.023 0.383 0.129 0.127 0.279 0.434
95% CI (lower limit) −0.18 −0.29 −0.15 −0.07 −0.33 −0.03 −0.07 −0.04

(upper limit) 0.09 0.03 −0.01 0.17 0.04 0.25 0.02 0.02
Observations 34800 8041 14501 14364 8942 3521 18821 19160
Left bandwidth 1.54 0.51 2.69 1.00 1.72 0.39 0.47 0.95
Right bandwidth 0.26 5.17 0.44 4.13 0.31 5.66 0.18 1.05

Panel B: Cutoffs associated with disclosure, quadratic polynomials, triangular kernels
Public disclosure

Policy regime Public disclosure w/ tighter standards
Years 2008 to 2011 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5

(1) (2) (3) (4) (5) (6)

LeewayC ≥ c 0.040 −0.046 0.206 −0.004 −0.023 −0.027
Robust p-value 0.784 0.175 0.258 0.855 0.254 0.161
95% CI (lower limit) −0.09 −0.03 −0.15 −0.09 −0.20 −0.01

(upper limit) 0.12 0.17 0.55 0.10 0.05 0.08
Observations 12765 13850 9237 3635 16802 21453
Left bandwidth 1.26 1.00 0.56 0.31 1.14 1.00
Right bandwidth 0.49 3.73 0.49 4.83 0.32 2.44

Notes: See notes to table 1.
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Table B2: Effects of known categorization on Salmonella outcomes—robustness to alternative specifications

Panel A: Cutoffs not associated with disclosure, linear polynomials, Epanechnikov kernels
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards
Years 1999 to 2006 2006 to 2008 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.022 −0.021 −0.058 0.049 −0.056 0.019 −0.030 0.006
Robust p-value 0.000 0.738 0.000 0.233 0.512 0.489 0.269 0.425
95% CI (lower limit) −0.28 −0.28 −0.24 −0.10 −0.23 −0.06 −0.06 −0.01

(upper limit) −0.09 0.20 −0.08 0.02 0.12 0.13 0.02 0.02
Observations 34866 5509 13467 14251 4240 2276 17439 19160
Left bandwidth 0.58 0.12 0.88 0.97 0.78 0.17 0.28 0.95
Right bandwidth 0.53 2.21 0.32 2.67 0.27 1.82 0.13 1.05

Panel B: Cutoffs associated with disclosure, linear polynomials, Epanechnikov kernels
Public disclosure

Policy regime Public disclosure w/ tighter standards
Years 2008 to 2011 2011 to 2015

RD cutoff (c) 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5

(1) (2) (3) (4) (5) (6)

LeewayC ≥ c 0.029 0.019 0.174 −0.023 −0.028 0.002
Robust p-value 0.479 0.108 0.507 0.360 0.393 0.187
95% CI (lower limit) −0.12 −0.09 −0.19 −0.09 −0.14 −0.05

(upper limit) 0.05 0.01 0.38 0.03 0.05 0.01
Observations 10639 13813 8236 2589 8817 21453
Left bandwidth 0.80 0.26 0.24 0.22 0.61 1.00
Right bandwidth 1.00 2.33 0.22 1.62 0.14 2.07

Notes: See notes to table 1.
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Table B3: Placebo effects of known categorization on Salmonella outcomes

RD cutoff (c) −0.15 −0.1 −0.05 0.05 0.1 0.15
(1) (2) (3) (4) (5) (6)

Panel A: 2006 to 2008, C = 6 positive samples
LeewayC ≥ 0 −0.056 −0.005 0.039 0.007 0.001 −0.001
Robust p-value 0.255 0.736 0.967 0.571 0.691 0.944

Panel B: 2006 to 2008, C = 12 positive samples
LeewayC ≥ 0 −0.001 0.088 0.160 0.045 0.177 0.091
Robust p-value 0.810 0.889 0.698 0.440 0.042 0.109

Panel C: 2011 to 2015, C = 2 positive samples
LeewayC ≥ 0 −0.073 −0.002 −0.004 0.000 0.011 0.139
Robust p-value 0.058 0.707 0.701 0.720 0.015 0.036

Notes: This table presents results of regressions paralleling those in table 1 with statistically significant results but for placebo
cutoffs not associated with any change in disclosure status. Each panel reports results for three placebo cutoffs on either side of
the actual cutoff (c = 0) according to c± 0.05n, where n = {1, 2, 3}. Each panel represents regressions using observations from
the policy regimes beginning and ending in the indicated years. For sample sets that span the dates of policy change, all
observations are included in the later policy period. All regressions are local linear RD regressions with triangular kernels,
using leewayC as the running variable. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms

command in Stata (Cattaneo et al., 2020c), although bandwidths and confidence intervals are suppressed in this table.
Bandwidths are chosen to minimize mean squared error on either side of each cutoff. All regressions control for sample
collection date, test number within sample set, and the share of samples positive in the establishment’s prior sample set.
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Table B4: Effects of policy changes on average Salmonella test outcomes: Robustness tests

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011

(1) (2) (3)

Panel A: Observations collapsed by sample collection date
t ≥ c 0.034 −0.045 0.063
Robust p-value 0.046 0.015 0.001
95% CI (lower limit) 0.00 −0.07 0.03

(upper limit) 0.08 −0.01 0.12
Observations 381 326 380
Left bandwidth 372 275 284
Right bandwidth 175 200 260

Panel B: “Donut” approach: Drop all observations within 7 days of policy changes
t ≥ c 0.024 −0.057 0.055
Robust p-value 0.294 0.039 0.088
95% CI (lower limit) −0.03 −0.11 −0.01

(upper limit) 0.10 −0.00 0.14
Observations 15236 7183 5414
Left bandwidth 366 204 199
Right bandwidth 220 237 233

Panel C: Drop all observations belonging to sample sets that span policy periods
t ≥ c 0.019 −0.051 0.131
Robust p-value 0.450 0.141 0.004
95% CI (lower limit) −0.05 −0.13 0.05

(upper limit) 0.11 0.02 0.25
Observations 12190 3984 3125
Left bandwidth 342 170 161
Right bandwidth 259 195 245

Notes: See notes to table 3.
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Table B5: Effects of policy changes on average Salmonella test outcomes: Placebo cutoff dates

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards

(1) (2) (3)

Panel A: Cutoffs c = Federal Register announcement dates
t ≥ c −0.032 −0.029 0.014
Robust p-value 0.622 0.859 0.263
95% CI (lower limit) −0.13 −0.09 −0.01

(upper limit) 0.08 0.07 0.05
Observations 9527 3326 5731
Left bandwidth 354 176 165
Right bandwidth 89 60 138

Panel B: Cutoffs c = 120 days before policy changes
t ≥ c −0.015 0.022 −0.008
Robust p-value 0.877 0.334 0.915
95% CI (lower limit) −0.07 −0.04 −0.04

(upper limit) 0.08 0.12 0.05
Observations 11627 2664 2944
Left bandwidth 426 144 174
Right bandwidth 117 38 120

Panel C: Cutoffs c = 240 days before policy changes
t ≥ c −0.018 0.053 0.002
Robust p-value 0.187 0.236 0.925
95% CI (lower limit) −0.07 −0.04 −0.09

(upper limit) 0.01 0.16 0.08
Observations 27891 4213 7277
Left bandwidth 1190 96 294
Right bandwidth 237 104 113

Panel D: Cutoffs c = 360 days before policy changes
t ≥ c 0.019 0.029 0.030
Robust p-value 0.573 0.094 0.111
95% CI (lower limit) −0.08 −0.01 −0.01

(upper limit) 0.15 0.08 0.08
Observations 15410 4474 6121
Left bandwidth 523 68 235
Right bandwidth 146 76 112

Panel E: Cutoffs c = 480 days before policy changes
t ≥ c −0.026 0.032 −0.006
Robust p-value 0.226 0.204 0.988
95% CI (lower limit) −0.11 −0.02 −0.06

(upper limit) 0.03 0.08 0.06
Observations 13538 5298 6117
Left bandwidth 545 66 238
Right bandwidth 160 130 108

Notes: For additional details on the regression specifications, see notes to table 3.



Appendix C: Analysis of additional policy regimes in place over 2015–2017

For clarity and ease of exposition, the body of the paper analyzes Salmonella test outcomes and shirking

only for the four policy periods in place from 1999 until May 5, 2016. The data set I obtained from FSIS

by FOIA request covers two additional policy regimes. This appendix describes those policy regimes and

analysis of shirking or moral hazard over these periods.

Effective May 6, 2015, the 51-sample-set framework was replaced with a system of categorization

based on aggregated results over rolling 52-week windows. Under the new system, categories were defined

using the same shares: an establishment with more than 9.8% of samples positive (i.e., 5/51) during

any window of the windows ending the previous month would be placed on the Category 3 list and

would remain on that list for a three-month period. The rolling-window system was introduced because

FSIS officials recognized that under the sample-set system, establishment operators might increase efforts

related to Salmonella control during the weeks that establishments were under scrutiny but shirk during

all other weeks of the year.19 Moreover, the rolling-window system seemed to be an effective way to

mitigate shirking: each week, a new rolling window began, so the end-of-sample-set incentives to shirk

might be countered by incentives to obtain good categorization in the coming year.

Shortly after the rolling-window system was introduced, FSIS began using a new chemical solution

(neutralizing buffered peptone water) as part of the test procedure.20 After this change, which was

implemented on July 1, 2016, the share of positive test results rapidly rose, and in November 2016, FSIS

suspended public disclosure of Salmonella category information for chicken-slaughter establishments but

continued to sample carcasses for Salmonella. No date was given for the resumption of disclosure; on

December 15, 2017, FSIS announced that disclosure would resume the following month. Thus, during

the final period analyzed, there were no immediate consequences for poor test outcomes. Establishment

operators may have anticipated that the tests might ultimately be incorporated into their categorization,

but they would not have known this for certain.21

Tables C1, C5, and C6 in this appendix present the results of regression models equivalent to those

in tables 1, 2 and 3, covering the periods 2015–16 (rolling windows) and 2016–17 (disclosure hiatus).

Tables C2, C3, C4, C7, and C8 present robustness and placebo tests equivalent to those in appendix B,

covering the periods 2015–16 and 2016–17.

Effects of known categorization on Salmonella test outcomes, 2015–17

Results for RD models equivalent to those shown in table 1 are shown in table C1. During the 2015–

16 period, sample sets were no longer used and establishments with more than 9.8 percent of samples

positive during any 52-week window ending within the last three months were listed as Category 3 on

19See https://www.federalregister.gov/documents/2015/01/26/2015-01323/

changes-to-the-salmonella-and-campylobacter-verification-testing-program-proposed-performance,
page 3945.

20See https://www.govinfo.gov/content/pkg/FR-2018-11-09/pdf/2018-24540.pdf.
21My data set also includes test results for December 15, 2017 to January 25, 2018, but because of the small

number of observations for the last period I have not analyzed data from that period.
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the FSIS website. Similar to the 2008–11 period, establishment operators apparently exerted effort to

meet the Category 1 standard but then reduced effort once exceeding the threshold. Establishments were

5.0 percentage points more likely to have positive samples after failing to meet the Category 1 standard

for the soonest-ending window (table C1, panel A, column 1). At the same time, establishments with

sufficiently good performance that they were guaranteed to meet the Category 1 standard in the soonest-

ending window were 3.3 percentage points more likely to have positive samples, which is evidence that

they shirked after a period of sustained good test performance (table C1, panel A, column 2). This form

of shirking was not evident during earlier periods. In addition, during this period, establishments appear

to have reduced effort after failing to meet the Category 2 standard and therefore becoming subject to

information disclosure. Establishments were 14.1 percentage points more likely to have positive samples

after failing to meet the Category 2 standard for the soonest-ending window during 2015–16 (table C1,

Panel B, column 1).

Under the hiatus in disclosure (2016–17), crossing thresholds associated with any of the categories

had statistically insignificant effects on Salmonella test outcomes.22

Table C4, presents results for regressions parallel to those in table C1 using placebo cutoff values

for the running variables (leewayC). Similar to table B3, the thresholds shown here are placebo cutoffs

near the statistically significant estimates from table C1. Specifically, the placebo cutoff values are three

multiples of 0.05 in either direction from c = 0; and the nearest multiples of 0.05 to c = 1 for which

optimal bandwidths (in the sense of minimizing mean squared errors) could be computed using the rdms

command in Stata (Cattaneo et al., 2020c). In table C4, three of the 15 RD coefficients are statistically

significant with p ¡ 0.1, and two of these have the “correct” sign in the sense that they are consistent

with the estimates for c = 0 in table C1 and the expectations about incentives for shirking that motivate

the analysis. The small p-values of these two coefficients gives some pause, but they are the only two

coefficients with the correct sign and p < 0.3. Moreover, when considering the results in table C4 together

with those in table B3, only three of the 33 coefficients have the correct sign and p < 0.3. In conclusion,

the placebo tests do not raise significant concerns about the conclusions drawn from table C1.

Proximity to thresholds and Salmonella test outcomes, 2015–17

Table C5 presents results of regressions that demonstrate the positive correlations between leeway2

(leeway5) for the soonest-ending window and the likelihood of positive Salmonella test results. The

regressions are similar to those in table 2, except that instead of using sample sets to calculate the values

of the running variable leeway and the regressor for share of samples positive, these regressions use the

soonest-ending window. In 2015–16, when the leeway2 value was 10 percentage points higher, the proba-

bility of a positive Salmonella test result was 2.00 percentage points higher (p = 0.012; elasticity = 0.87;

panel A, column 2). Under the disclosure hiatus, there was no statistically significant relationship be-

tween leeway2 and Salmonella test results. When the leeway5 value was 10 percentage points higher, the

probability of a positive Salmonella test result was 3.03 percentage points higher in 2015–16 (p < 0.001;

22The insignificant effects are robust to the polynomial and kernel choices, as seen in tables C2 and C3.
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elasticity = 0.88; panel B, column 2) and 4.16 percentage points higher in 2016–17 (p = 0.018; elasticity

= 0.55; panel B, column 4).

Although the correlation between leeway2 and positive Salmonella test results lessened under the

disclosure hiatus from 2016 to 2017, the correlation between leeway5 and test results increased in this

period, relative to 2011–15 and 2015–16. In other words, establishment operators appear to have relaxed

efforts around Salmonella control when they had more leeway with respect to the Category 2/3 threshold,

and did so more in 2016–17 than during the earlier periods when the same threshold applied.

Effects of policy changes, 2015 and 2016

Table C6 presents results of RDiT regressions for the policy changes in 2015 and 2016. These policy

changes had insignificant effects on average Salmonella test outcomes under the main specifications.

When collapsing the data set and using the daily share of samples positive as the dependent variable

(rather than carcass-level test results), the 2015 introduction of rolling windows is estimated to have

decreased the share of samples positive by 2.6 percentage points, evidence of the effectiveness of the

rolling-windows system (table C7, panel A, column 1). The additional robustness tests and placebo tests

presented in tables C7 and C8 do not raise concerns about the validity of the main result. In conclusion,

the 2015 introduction of rolling windows may have improved average test results, but the estimated effects

are not as robust as those presented in table 3, which shows that the introduction of public disclosure in

2008 reduced the share of samples positive by about 55 percent.
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Table C1: Effects of known categorization on Salmonella outcomes, 2015–17

Panel A: Cutoffs not associated with disclosure
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 2 2 2 2

(1) (2) (3) (4)

LeewayC ≥ c −0.050 0.033 −0.029 −0.217
Robust p-value 0.030 0.006 0.127 0.212
95% CI (lower limit) −0.09 0.01 −0.07 −0.56

(upper limit) −0.00 0.06 0.01 0.12
Observations 8405 8076 4390 2619
Left bandwidth 1.15 1.00 2.50 1.00
Right bandwidth 0.21 1.00 0.67 1.00

Panel B: Cutoffs associated with disclosure
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 5 5 5 5

(1) (2) (3) (4)

LeewayC ≥ c −0.141 0.061 0.004 −0.107
Robust p-value 0.027 0.643 0.880 0.580
95% CI (lower limit) −0.25 −0.02 −0.05 −0.59

(upper limit) −0.03 0.05 0.06 1.06
Observations 6977 8772 2365 4145
Left bandwidth 0.78 1.00 3.67 0.67
Right bandwidth 0.47 1.77 1.00 2.02

Notes: Each pair of columns represents regressions using observations from the policy regimes
beginning and ending in the indicated years. For sample sets that span the dates of policy
change, all observations are included in the later policy period. All regressions are local linear
RD regressions with triangular kernels, using leewayC as the running variable, as described in
the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms

command in Stata (Cattaneo et al., 2020c), clustering on establishment using nearest-neighbor
estimation for the variance-covariance estimator. Bandwidths are chosen to minimize mean
squared error on either side of each cutoff. All regressions control for sample collection date, test
number within sample set, and the share of samples positive in the establishment’s prior sample
set.
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Table C2: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure, quadratic polynomials, triangular kernels
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 2 2 2 2

(1) (2) (3) (4)

LeewayC ≥ c −0.049 −0.027 −0.024 −0.317
Robust p-value 0.046 0.216 0.309 0.952
95% CI (lower limit) −0.09 −0.07 −0.06 −0.20

(upper limit) −0.00 0.02 0.02 0.22
Observations 9096 8076 5662 2602
Left bandwidth 3.08 1.00 5.63 0.67
Right bandwidth 0.29 1.00 0.62 1.00

Panel B: Cutoffs associated with disclosure, quadratic polynomials, triangular kernels
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 5 5 5 5

(1) (2) (3) (4)

LeewayC ≥ c −0.114 −0.005 −0.013 0.231
Robust p-value 0.016 0.006 0.606 0.602
95% CI (lower limit) −0.21 0.03 −0.10 −1.56

(upper limit) −0.02 0.18 0.06 2.70
Observations 7522 10680 2471 5869
Left bandwidth 2.77 1.00 4.95 1.00
Right bandwidth 0.65 3.65 0.67 3.54

Notes: See notes to table 1.
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Table C3: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure, linear polynomials, Epanechnikov kernels
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 2 2 2 2

(1) (2) (3) (4)

LeewayC ≥ c −0.050 0.030 −0.030 −0.198
Robust p-value 0.024 0.012 0.117 0.208
95% CI (lower limit) −0.09 0.01 −0.07 −0.51

(upper limit) −0.01 0.05 0.01 0.11
Observations 8293 8076 4381 2619
Left bandwidth 1.20 1.00 2.33 1.00
Right bandwidth 0.18 1.00 0.67 1.00

Panel B: Cutoffs associated with disclosure, linear polynomials, Epanechnikov kernels
Policy regime Rolling windows Disclosure hiatus
Years 2015 to 2016 2016 to 2017

RD cutoff (c) 0 1 0 1
Max. # pos. samples (C) 5 5 5 5

(1) (2) (3) (4)

LeewayC ≥ c −0.123 0.062 0.003 −0.122
Robust p-value 0.051 0.685 0.970 0.587
95% CI (lower limit) −0.22 −0.03 −0.06 −0.58

(upper limit) 0.00 0.05 0.06 1.02
Observations 6978 8772 2176 3091
Left bandwidth 0.93 1.00 2.67 1.00
Right bandwidth 0.48 1.62 0.67 1.83

Notes: See notes to table 1.

40



Table C4: Placebo effects of known categorization on Salmonella outcomes

RD cutoff (c) −0.15 −0.1 −0.05 0.1 0.15 0.2
(1) (2) (3) (4) (5) (6)

Panel A: 2015 to 2016, C = 2 positive samples
LeewayC ≥ 0 0.013 −0.017 −0.071 0.015 −0.011 0.004
Robust p-value 0.865 0.954 0.938 0.213 0.306 0.310

RD cutoff (c) −0.2 −0.15 −0.1 0.05 0.1 0.15
(1) (2) (3) (4) (5) (6)

Panel B: 2015 to 2016, C = 5 positive samples
LeewayC ≥ 0 −0.058 0.191 −0.138 −0.141 −0.026 0.003
Robust p-value 0.544 0.035 0.000 0.487 0.002 0.847

RD cutoff (c) 0.35 0.4 0.45
(1) (2) (3)

Panel C: 2015 to 2016, C = 2 positive samples
LeewayC ≥ 1 −0.009 −0.013 0.013
Robust p-value 0.253 0.299 0.387

Notes: This table presents results of regressions paralleling those in table 1 with statistically significant results but for placebo
cutoffs not associated with any change in disclosure status. Each panel uses the nearest placebo cutoffs to the actual cutoff
(c = 0 in panels A and B; c = 1 in panel C) that are multiples of 0.05, for which there are enough observations on either side of
the placebo cutoffs to estimate the optimal bandwidths around c. Because the only possible value of leeway2 greater than 1 is
2, there are no usable placebo cutoffs above c = 1 for panel C. Each panel represents regressions using observations from the
policy regimes beginning and ending in the indicated years. For sample sets that span the dates of policy change, all
observations are included in the later policy period. All regressions are local linear RD regressions with triangular kernels, using
leewayC as the running variable. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command
in Stata (Cattaneo et al., 2020c), although bandwidths and confidence intervals are suppressed in this table. Bandwidths are
chosen to minimize mean squared error on either side of each cutoff. All regressions control for sample collection date.
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Table C5: Effects of proximity to category thresholds on Salmonella test outcomes, 2015–17

Rolling windows, 2015 to 2016 Disclosure hiatus, 2016 to 2017
(1) (2) (3) (4)

Panel A
Leeway2 (soonest-ending window) 0.258 0.200 0.261 −0.121

(0.081) (0.079) (0.11) (0.15)
Share of samples positive, soonest-ending window −2.942 −14.07

(1.02) (6.50)
Observations 7787 7604 1863 1863
Elasticity 1.12 0.87 0.72 −0.34

Panel B
Leeway5 (soonest-ending window) 0.368 0.303 0.660 0.416

(0.069) (0.063) (0.13) (0.17)
Share of samples positive, soonest-ending window −2.581 −8.067

(0.48) (5.30)
Observations 7117 6934 971 971
Elasticity 3.84 3.16 0.88 0.55

Notes: This table represents the results of similar regressions to those shown in table 2, for the 2015–16 policy period during
which sample sets were replaced with overlapping sampling windows, and the 2016–17 hiatus in public disclosure. Panel A
demonstrates the effects of proximity to the Category 1 threshold (leeway2) on Salmonella test outcomes; Panel B the effects
of proximity to the Category 2 threshold (leeway5). The main variables of interest are leeway2 and leeway5 for the
soonest-ending window, but the even-numbered columns also control for the share of samples positive in the soonest-ending
window. All regressions use establishment–month–year fixed effects. Standard errors, clustered by establishment, are given in
parentheses. Elasticities reported are the elasticities of the share of samples positive with respect to leewayC, calculated using
the mean share of samples positive and the mean value of leewayC. Observations are included only if leewayC ∈ [0, 1).
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Table C6: Effects of policy changes on average Salmonella test outcomes

Policy introduced Rolling windows Disclosure hiatus
Date of implementation (c) 5/6/2015 11/20/2016

(1) (2)

Panel A: All establishments included
t ≥ c −0.015 0.005
Robust p-value 0.388 0.819
95% CI (lower limit) −0.05 −0.03

(upper limit) 0.02 0.04
Observations 11935 5734
Left bandwidth 392 98
Right bandwidth 165 128

Panel B: Establishments that ever exited excluded
t ≥ c −0.015 0.005
Robust p-value 0.393 0.803
95% CI (lower limit) −0.05 −0.03

(upper limit) 0.02 0.04
Observations 13650 5795
Left bandwidth 512 99
Right bandwidth 167 129

Notes: This table reports the results of RD in time regressions that use the dates of policy
implementation as the cutoffs (c). All regressions are local linear RD regressions with triangular
kernels, using the sample collection date as the running variable, as described in the text.
Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in
Stata (Cattaneo et al., 2020c). Bandwidths are chosen to minimize mean squared error on either
side of each cutoff.
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Table C7: Effects of policy changes on average Salmonella test outcomes: Robustness tests

Policy introduced Rolling windows Disclosure hiatus
Date of implementation (c) 5/6/2015 11/20/2016

(1) (2)

Panel A: Observations collapsed by sample collection date
t ≥ c −0.026 0.145
Robust p-value 0.066 0.115
95% CI (lower limit) −0.06 −0.04

(upper limit) 0.00 0.38
Observations 444 144
Left bandwidth 390 81
Right bandwidth 183 98

Panel B: “Donut” approach: Drop all observations within 7 days of policy changes
t ≥ c −0.024 0.006
Robust p-value 0.143 0.874
95% CI (lower limit) −0.06 −0.04

(upper limit) 0.01 0.05
Observations 14017 4631
Left bandwidth 513 83
Right bandwidth 186 108

Panel C: Drop all observations belonging to sample sets that span policy periods
t ≥ c −0.013 0.005
Robust p-value 0.424 0.785
95% CI (lower limit) −0.05 −0.03

(upper limit) 0.02 0.04
Observations 11372 5790
Left bandwidth 389 98
Right bandwidth 170 130

Notes: See notes to table 3.
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Table C8: Effects of policy changes on average Salmonella test outcomes: Placebo cutoff dates

Rolling windows Disclosure hiatus
(1) (2)

Panel A: Cutoffs c = Federal Register announcement dates
t ≥ c −0.014
Robust p-value 0.617
95% CI (lower limit) −0.04

(upper limit) 0.02
Observations 10789
Left bandwidth 440
Right bandwidth 99

Panel B: Cutoffs c = 120 days before policy changes
t ≥ c −0.013 0.016
Robust p-value 0.894 0.435
95% CI (lower limit) −0.05 −0.02

(upper limit) 0.04 0.05
Observations 9699 5456
Left bandwidth 357 72
Right bandwidth 119 150

Panel C: Cutoffs c = 240 days before policy changes
t ≥ c −0.020 −0.007
Robust p-value 0.069 0.573
95% CI (lower limit) −0.07 −0.03

(upper limit) 0.00 0.02
Observations 8811 4492
Left bandwidth 295 72
Right bandwidth 83 122

Panel D: Cutoffs c = 360 days before policy changes
t ≥ c −0.006 0.004
Robust p-value 0.547 0.589
95% CI (lower limit) −0.03 −0.03

(upper limit) 0.02 0.04
Observations 8271 3253
Left bandwidth 232 46
Right bandwidth 115 102

Panel E: Cutoffs c = 480 days before policy changes
t ≥ c −0.008 −0.012
Robust p-value 0.726 0.157
95% CI (lower limit) −0.04 −0.04

(upper limit) 0.03 0.01
Observations 12195 5227
Left bandwidth 316 84
Right bandwidth 161 164

Notes: Panel A does not include column (2) because the hiatus in disclosure was not preceded by a
Federal Register announcement. For additional details on the regression specifications, see notes to
table 3.


